Department of Chemistry and the Center for Energy Nanoscience, University of Southern California , Los Angeles, California 90089, United States.
ACS Nano. 2014 Mar 25;8(3):2512-21. doi: 10.1021/nn406109v. Epub 2014 Feb 10.
We have employed a simple modular approach to install small chalcogenol ligands on the surface of CdSe nanocrystals. This versatile modification strategy provides access to thiol, selenol, and tellurol ligand sets via the in situ reduction of R2E2 (R=tBu, Bn, Ph; E=S, Se, Te) by diphenylphosphine (Ph2PH). The ligand exchange chemistry was analyzed by solution NMR spectroscopy, which reveals that reduction of the R2E2 precursors by Ph2PH directly yields active chalcogenol ligands that subsequently bind to the surface of the CdSe nanocrystals. Thermogravimetric analysis, FT-IR spectroscopy, and energy dispersive X-ray spectroscopy provide further evidence for chalcogenol addition to the CdSe surface with a concomitant reduction in overall organic content from the displacement of native ligands. Time-resolved and low temperature photoluminescence measurements showed that all of the phenylchalcogenol ligands rapidly quench the photoluminescence by hole localization onto the ligand. Selenol and tellurol ligands exhibit a larger driving force for hole transfer than thiol ligands and therefore quench the photoluminescence more efficiently. The hole transfer process could lead to engineering long-lived, partially separated excited states.
我们采用了一种简单的模块化方法,在 CdSe 纳米晶体表面安装小分子硫醇配体。这种多功能的修饰策略可以通过二苯基膦(Ph2PH)原位还原 R2E2(R=tBu、Bn、Ph;E=S、Se、Te)来获得硫醇、硒醇和碲醇配体。通过溶液 NMR 光谱分析了配体交换化学,结果表明,R2E2 前体与 Ph2PH 的还原直接生成了活性硫醇配体,随后这些配体结合到 CdSe 纳米晶体的表面。热重分析、傅里叶变换红外光谱和能量色散 X 射线光谱进一步证明了 CdSe 表面添加了硫醇配体,同时由于取代了原有的配体,总有机含量降低。时间分辨和低温光致发光测量表明,所有的苯硫醇配体都通过空穴定位到配体上快速猝灭光致发光。硒醇和碲醇配体比硫醇配体具有更大的空穴转移驱动力,因此更有效地猝灭光致发光。空穴转移过程可能导致工程化长寿命、部分分离的激发态。