Suppr超能文献

关于高斯重复测量的极小子样本分析:一种替代方法。

On the analysis of very small samples of Gaussian repeated measurements: an alternative approach.

作者信息

Westgate Philip M, Burchett Woodrow W

机构信息

Department of Biostatistics, College of Public Health, University of Kentucky, Lexington, 40536, KY, U.S.A.

Department of Statistics, College of Arts and Sciences, University of Kentucky, Lexington, 40536, KY, U.S.A.

出版信息

Stat Med. 2017 Mar 15;36(6):958-970. doi: 10.1002/sim.7199. Epub 2017 Jan 8.

Abstract

The analysis of very small samples of Gaussian repeated measurements can be challenging. First, due to a very small number of independent subjects contributing outcomes over time, statistical power can be quite small. Second, nuisance covariance parameters must be appropriately accounted for in the analysis in order to maintain the nominal test size. However, available statistical strategies that ensure valid statistical inference may lack power, whereas more powerful methods may have the potential for inflated test sizes. Therefore, we explore an alternative approach to the analysis of very small samples of Gaussian repeated measurements, with the goal of maintaining valid inference while also improving statistical power relative to other valid methods. This approach uses generalized estimating equations with a bias-corrected empirical covariance matrix that accounts for all small-sample aspects of nuisance correlation parameter estimation in order to maintain valid inference. Furthermore, the approach utilizes correlation selection strategies with the goal of choosing the working structure that will result in the greatest power. In our study, we show that when accurate modeling of the nuisance correlation structure impacts the efficiency of regression parameter estimation, this method can improve power relative to existing methods that yield valid inference. Copyright © 2017 John Wiley & Sons, Ltd.

摘要

对高斯重复测量的极少量样本进行分析可能具有挑战性。首先,由于随着时间推移贡献结果的独立受试者数量极少,统计功效可能相当低。其次,在分析中必须适当考虑干扰协方差参数,以维持名义检验规模。然而,确保有效统计推断的现有统计策略可能缺乏功效,而功效更强的方法可能存在检验规模膨胀的可能性。因此,我们探索一种对高斯重复测量的极少量样本进行分析的替代方法,目标是在维持有效推断的同时,相对于其他有效方法提高统计功效。这种方法使用带有偏差校正经验协方差矩阵的广义估计方程,该矩阵考虑了干扰相关参数估计的所有小样本方面,以维持有效推断。此外,该方法利用相关选择策略,目标是选择能产生最大功效的工作结构。在我们的研究中,我们表明,当干扰相关结构的准确建模影响回归参数估计的效率时,相对于产生有效推断的现有方法,此方法可以提高功效。版权所有© 2017约翰·威利父子有限公司。

相似文献

8
Intra-cluster correlation selection for cluster randomized trials.整群随机试验的组内相关选择
Stat Med. 2016 Aug 30;35(19):3272-84. doi: 10.1002/sim.6922. Epub 2016 Feb 28.
9
Robust small-sample inference for fixed effects in general Gaussian linear models.
J Biopharm Stat. 2012;22(3):544-64. doi: 10.1080/10543406.2011.557792.

本文引用的文献

4
Intra-cluster correlation selection for cluster randomized trials.整群随机试验的组内相关选择
Stat Med. 2016 Aug 30;35(19):3272-84. doi: 10.1002/sim.6922. Epub 2016 Feb 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验