Suppr超能文献

使用参数模型对脑部磁共振成像进行快速、序列自适应分割

Fast, sequence adaptive parcellation of brain MR using parametric models.

作者信息

Puonti Oula, Iglesias Juan Eugenio, Van Leemput Koen

机构信息

Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark

Martinos Center for Biomedical Imaging, MIGH, Harvard Medical School, USA.

出版信息

Med Image Comput Comput Assist Interv. 2013;16(Pt 1):727-34. doi: 10.1007/978-3-642-40811-3_91.

Abstract

In this paper we propose a method for whole brain parcellation using the type of generative parametric models typically used in tissue classification. Compared to the non-parametric, multi-atlas segmentation techniques that have become popular in recent years, our method obtains state-of-the-art segmentation performance in both cortical and subcortical structures, while retaining all the benefits of generative parametric models, including high computational speed, automatic adaptiveness to changes in image contrast when different scanner platforms and pulse sequences are used, and the ability to handle multi-contrast (vector-valued intensities) MR data. We have validated our method by comparing its segmentations to manual delineations both within and across scanner platforms and pulse sequences, and show preliminary results on multi-contrast test-retest scans, demonstrating the feasibility of the approach.

摘要

在本文中,我们提出了一种使用组织分类中常用的生成参数模型类型进行全脑分割的方法。与近年来流行的非参数多图谱分割技术相比,我们的方法在皮质和皮质下结构中均获得了领先的分割性能,同时保留了生成参数模型的所有优点,包括高计算速度、在使用不同扫描仪平台和脉冲序列时对图像对比度变化的自动适应性,以及处理多对比度(矢量值强度)磁共振数据的能力。我们通过在扫描仪平台和脉冲序列内部及之间将其分割结果与手动勾勒结果进行比较,验证了我们的方法,并展示了多对比度重测扫描的初步结果,证明了该方法的可行性。

相似文献

1
Fast, sequence adaptive parcellation of brain MR using parametric models.
Med Image Comput Comput Assist Interv. 2013;16(Pt 1):727-34. doi: 10.1007/978-3-642-40811-3_91.
2
A histology-based model of quantitative T1 contrast for in-vivo cortical parcellation of high-resolution 7 Tesla brain MR images.
Med Image Comput Comput Assist Interv. 2013;16(Pt 2):51-8. doi: 10.1007/978-3-642-40763-5_7.
3
Automatic hippocampus segmentation of 7.0 Tesla MR images by combining multiple atlases and auto-context models.
Neuroimage. 2013 Dec;83:335-45. doi: 10.1016/j.neuroimage.2013.06.006. Epub 2013 Jun 11.
4
A probabilistic, non-parametric framework for inter-modality label fusion.
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):576-83. doi: 10.1007/978-3-642-40760-4_72.
5
Stable Atlas-based Mapped Prior (STAMP) machine-learning segmentation for multicenter large-scale MRI data.
Magn Reson Imaging. 2014 Sep;32(7):832-44. doi: 10.1016/j.mri.2014.04.016. Epub 2014 May 9.
6
Atlas renormalization for improved brain MR image segmentation across scanner platforms.
IEEE Trans Med Imaging. 2007 Apr;26(4):479-86. doi: 10.1109/TMI.2007.893282.
7
An accurate and efficient bayesian method for automatic segmentation of brain MRI.
IEEE Trans Med Imaging. 2002 Aug;21(8):934-45. doi: 10.1109/TMI.2002.803119.
8
Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature.
Neuroimage. 2010 Oct 15;53(1):1-15. doi: 10.1016/j.neuroimage.2010.06.010. Epub 2010 Jun 12.
9
Clinical neonatal brain MRI segmentation using adaptive nonparametric data models and intensity-based Markov priors.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):883-90. doi: 10.1007/978-3-540-75757-3_107.
10
MR brain tissue classification using an edge-preserving spatially variant Bayesian mixture model.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):43-50. doi: 10.1007/978-3-540-85988-8_6.

引用本文的文献

1
Robustness of radiomics to variations in segmentation methods in multimodal brain MRI.
Sci Rep. 2022 Oct 6;12(1):16712. doi: 10.1038/s41598-022-20703-9.
2
Reliability and sensitivity of two whole-brain segmentation approaches included in FreeSurfer - ASEG and SAMSEG.
Neuroimage. 2021 Aug 15;237:118113. doi: 10.1016/j.neuroimage.2021.118113. Epub 2021 May 1.
3
Automated Segmentation of Tissues Using CT and MRI: A Systematic Review.
Acad Radiol. 2019 Dec;26(12):1695-1706. doi: 10.1016/j.acra.2019.07.006. Epub 2019 Aug 10.
5
Fast and sequence-adaptive whole-brain segmentation using parametric Bayesian modeling.
Neuroimage. 2016 Dec;143:235-249. doi: 10.1016/j.neuroimage.2016.09.011. Epub 2016 Sep 7.
6
Automatic segmentation of the striatum and globus pallidus using MIST: Multimodal Image Segmentation Tool.
Neuroimage. 2016 Jan 15;125:479-497. doi: 10.1016/j.neuroimage.2015.10.013. Epub 2015 Oct 19.
8
Bayesian segmentation of brainstem structures in MRI.
Neuroimage. 2015 Jun;113:184-95. doi: 10.1016/j.neuroimage.2015.02.065. Epub 2015 Mar 14.

本文引用的文献

1
A generative model for image segmentation based on label fusion.
IEEE Trans Med Imaging. 2010 Oct;29(10):1714-29. doi: 10.1109/TMI.2010.2050897. Epub 2010 Jun 17.
2
An evaluation of four automatic methods of segmenting the subcortical structures in the brain.
Neuroimage. 2009 Oct 1;47(4):1435-47. doi: 10.1016/j.neuroimage.2009.05.029. Epub 2009 May 20.
3
Encoding probabilistic brain atlases using Bayesian inference.
IEEE Trans Med Imaging. 2009 Jun;28(6):822-37. doi: 10.1109/TMI.2008.2010434. Epub 2008 Dec 9.
4
Homeomorphic brain image segmentation with topological and statistical atlases.
Med Image Anal. 2008 Oct;12(5):616-25. doi: 10.1016/j.media.2008.06.008. Epub 2008 Jun 20.
5
Atlas renormalization for improved brain MR image segmentation across scanner platforms.
IEEE Trans Med Imaging. 2007 Apr;26(4):479-86. doi: 10.1109/TMI.2007.893282.
6
Automatic anatomical brain MRI segmentation combining label propagation and decision fusion.
Neuroimage. 2006 Oct 15;33(1):115-26. doi: 10.1016/j.neuroimage.2006.05.061. Epub 2006 Jul 24.
7
Unified segmentation.
Neuroimage. 2005 Jul 1;26(3):839-51. doi: 10.1016/j.neuroimage.2005.02.018. Epub 2005 Apr 1.
8
Sequence-independent segmentation of magnetic resonance images.
Neuroimage. 2004;23 Suppl 1:S69-84. doi: 10.1016/j.neuroimage.2004.07.016.
9
Automated model-based bias field correction of MR images of the brain.
IEEE Trans Med Imaging. 1999 Oct;18(10):885-96. doi: 10.1109/42.811268.
10
Cortical surface-based analysis. I. Segmentation and surface reconstruction.
Neuroimage. 1999 Feb;9(2):179-94. doi: 10.1006/nimg.1998.0395.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验