Visser Eelke, Keuken Max C, Douaud Gwenaëlle, Gaura Veronique, Bachoud-Levi Anne-Catherine, Remy Philippe, Forstmann Birte U, Jenkinson Mark
FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
Amsterdam Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands.
Neuroimage. 2016 Jan 15;125:479-497. doi: 10.1016/j.neuroimage.2015.10.013. Epub 2015 Oct 19.
Accurate segmentation of the subcortical structures is frequently required in neuroimaging studies. Most existing methods use only a T1-weighted MRI volume to segment all supported structures and usually rely on a database of training data. We propose a new method that can use multiple image modalities simultaneously and a single reference segmentation for initialisation, without the need for a manually labelled training set. The method models intensity profiles in multiple images around the boundaries of the structure after nonlinear registration. It is trained using a set of unlabelled training data, which may be the same images that are to be segmented, and it can automatically infer the location of the physical boundary using user-specified priors. We show that the method produces high-quality segmentations of the striatum, which is clearly visible on T1-weighted scans, and the globus pallidus, which has poor contrast on such scans. The method compares favourably to existing methods, showing greater overlap with manual segmentations and better consistency.
在神经影像学研究中,经常需要对皮质下结构进行精确分割。大多数现有方法仅使用T1加权MRI体积来分割所有支持的结构,并且通常依赖于训练数据数据库。我们提出了一种新方法,该方法可以同时使用多种图像模态,并使用单个参考分割进行初始化,而无需手动标记的训练集。该方法在非线性配准后对结构边界周围的多幅图像中的强度轮廓进行建模。它使用一组未标记的训练数据进行训练,这些数据可能是要分割的相同图像,并且它可以使用用户指定的先验自动推断物理边界的位置。我们表明,该方法对纹状体产生高质量的分割,纹状体在T1加权扫描上清晰可见,对苍白球也能产生高质量分割,苍白球在这种扫描上对比度较差。该方法与现有方法相比具有优势,与手动分割显示出更大的重叠度和更好的一致性。