Suppr超能文献

基于群组稀疏正则化学习的功能脑网络重构。

Functional brain networks reconstruction using group sparsity-regularized learning.

机构信息

School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.

Cortical Architecture Imaging and Discovery Laboratory, Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA, USA.

出版信息

Brain Imaging Behav. 2018 Jun;12(3):758-770. doi: 10.1007/s11682-017-9737-4.

Abstract

Investigating functional brain networks and patterns using sparse representation of fMRI data has received significant interests in the neuroimaging community. It has been reported that sparse representation is effective in reconstructing concurrent and interactive functional brain networks. To date, most of data-driven network reconstruction approaches rarely take consideration of anatomical structures, which are the substrate of brain function. Furthermore, it has been rarely explored whether structured sparse representation with anatomical guidance could facilitate functional networks reconstruction. To address this problem, in this paper, we propose to reconstruct brain networks utilizing the structure guided group sparse regression (S2GSR) in which 116 anatomical regions from the AAL template, as prior knowledge, are employed to guide the network reconstruction when performing sparse representation of whole-brain fMRI data. Specifically, we extract fMRI signals from standard space aligned with the AAL template. Then by learning a global over-complete dictionary, with the learned dictionary as a set of features (regressors), the group structured regression employs anatomical structures as group information to regress whole brain signals. Finally, the decomposition coefficients matrix is mapped back to the brain volume to represent functional brain networks and patterns. We use the publicly available Human Connectome Project (HCP) Q1 dataset as the test bed, and the experimental results indicate that the proposed anatomically guided structure sparse representation is effective in reconstructing concurrent functional brain networks.

摘要

使用 fMRI 数据的稀疏表示来研究功能脑网络和模式在神经影像学领域引起了广泛关注。据报道,稀疏表示在重建并发和交互功能脑网络方面非常有效。迄今为止,大多数数据驱动的网络重建方法很少考虑到作为大脑功能基础的解剖结构。此外,很少有人探讨是否可以通过具有解剖学指导的结构稀疏表示来促进功能网络重建。为了解决这个问题,在本文中,我们提出了利用结构引导组稀疏回归(S2GSR)来重建脑网络的方法,其中使用 AAL 模板中的 116 个解剖区域作为先验知识,在对全脑 fMRI 数据进行稀疏表示时指导网络重建。具体来说,我们从与 AAL 模板对齐的标准空间中提取 fMRI 信号。然后,通过学习全局过完备字典,将学习到的字典作为一组特征(回归器),组结构回归利用解剖结构作为组信息来回归全脑信号。最后,将分解系数矩阵映射回大脑体积以表示功能脑网络和模式。我们使用公开的 HCP Q1 数据集作为测试床,实验结果表明,所提出的解剖学引导结构稀疏表示在重建并发功能脑网络方面是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f96/5723255/ef82e32b0e74/nihms883804f1.jpg

相似文献

3
Sparse representation of group-wise FMRI signals.分组功能磁共振成像信号的稀疏表示
Med Image Comput Comput Assist Interv. 2013;16(Pt 3):608-16. doi: 10.1007/978-3-642-40760-4_76.
4
Supervised dictionary learning for inferring concurrent brain networks.监督字典学习用于推断并发脑网络。
IEEE Trans Med Imaging. 2015 Oct;34(10):2036-45. doi: 10.1109/TMI.2015.2418734. Epub 2015 Apr 1.

本文引用的文献

1
Learning Efficient Sparse and Low Rank Models.学习高效稀疏和低秩模型。
IEEE Trans Pattern Anal Mach Intell. 2015 Sep;37(9):1821-33. doi: 10.1109/TPAMI.2015.2392779.
5
Sparse Methods for Biomedical Data.生物医学数据的稀疏方法
SIGKDD Explor. 2012 Jun 1;14(1):4-15. doi: 10.1145/2408736.2408739.
6
The WU-Minn Human Connectome Project: an overview.《WU-Minn 人类连接组计划:概述》。
Neuroimage. 2013 Oct 15;80:62-79. doi: 10.1016/j.neuroimage.2013.05.041. Epub 2013 May 16.
7
The minimal preprocessing pipelines for the Human Connectome Project.人类连接组计划的最小预处理管道。
Neuroimage. 2013 Oct 15;80:105-24. doi: 10.1016/j.neuroimage.2013.04.127. Epub 2013 May 11.
9
Interpretable whole-brain prediction analysis with GraphNet.基于 GraphNet 的可解释全脑预测分析。
Neuroimage. 2013 May 15;72:304-21. doi: 10.1016/j.neuroimage.2012.12.062. Epub 2013 Jan 5.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验