Suppr超能文献

使用“沉默门控”模型对鱿鱼轴突、蛙神经节以及使用了丁布(BTX)的蛙神经节中的钠通道动力学进行比较。

A comparison of sodium channel kinetics in the squid axon, the frog node and the frog node with BTX using the "silent gate" model.

作者信息

Edmonds D T

机构信息

Clarendon Laboratory, Oxford, United Kingdom.

出版信息

Eur Biophys J. 1987;15(1):27-33. doi: 10.1007/BF00255032.

Abstract

In this paper it is shown that the very different kinetics measured for the rise of the sodium current which follows a depolarization of the membrane in the squid giant axon, the frog node and the frog node treated with Batrachotoxin may be accurately predicted using only the measured equilibrium and static characteristics for the three preparations and the kinetics measured for the gating charge transfer. The kinetic predictions follow the use of the "silent gate" model for ion channel gating. The model is electrostatic and its chief assumptions are that the channel gate, called here the N-system, has fast kinetics and responds to the gating charge that transfers but not directly to the trans-membrane voltage applied. Because channel gating, corresponding here to the motion of the N-system, does not change its energy in the trans-membrane applied electric field the gating is electrically silent as far as gating charge transfer measurement is concerned. However the probability of gating rises with the quantity of gating charge that transfers due to the electrostatic interaction between the N-system and the gating charge, redistributed under the influence of the applied trans-membrane electric field. With these assumptions the kinetics of sodium channel gating are predictable using only the static and equilibrium characteristics of gating charge and channel activation measured as a function of membrane voltage, and the kinetics of the gating charge transfer. Because of the fast kinetics assumed for the N-system the predicted kinetics are the same for channels with any number of equivalent and independent N-systems or gates acting in parallel.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

本文表明,利用枪乌贼巨轴突、蛙神经节以及用蛙毒素处理过的蛙神经节这三种标本所测得的平衡和静态特性,以及门控电荷转移的动力学,仅通过这些就能准确预测在膜去极化后,上述三种标本中钠电流上升所测得的截然不同的动力学。动力学预测是基于离子通道门控的“沉默门”模型。该模型是静电模型,其主要假设是,这里称为N系统的通道门具有快速动力学,且对转移的门控电荷作出响应,而非直接对施加的跨膜电压作出响应。因为通道门控(在此对应于N系统的运动)在施加的跨膜电场中其能量不变,就门控电荷转移测量而言,这种门控是电沉默的。然而,由于N系统与门控电荷之间的静电相互作用,门控概率会随着转移的门控电荷量增加而上升,这种静电相互作用是在施加的跨膜电场影响下重新分布的。基于这些假设,仅利用作为膜电压函数测得的门控电荷和通道激活的静态及平衡特性,以及门控电荷转移的动力学,就能预测钠通道门控的动力学。由于假设N系统具有快速动力学,对于任何数量等效且独立的N系统或并行作用的门的通道,预测的动力学都是相同的。(摘要截选至250词)

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验