Suppr超能文献

枪乌贼巨大轴突中钠电导激活的动力学

Kinetics of activation of the sodium conductance in the squid giant axon.

作者信息

Keynes R D, Kimura J E

出版信息

J Physiol. 1983 Mar;336:621-34. doi: 10.1113/jphysiol.1983.sp014601.

Abstract

The time course of the rise in sodium conductance during positive voltage-clamp pulses was measured in squid giant axons perfused with CsF and immersed in low-sodium solutions. The initial transients were eliminated by subtraction of records made after blocking the sodium channels with tetrodotoxin. The value of tau m as defined by Hodgkin & Huxley (1952) passed through a well defined maximum at a membrane potential of about -35 mV. On fitting the initial inflexion in the rise of INa to the expression mXh instead of m3h, the value of X was found to vary from axon to axon between 2.9 and 4.4, with an average of 3.5. For any given axon, X did not vary significantly with pulse potential. Measurements of tau m were made on approaching each value of the membrane potential both from the negative and from the positive side. The cube law kinetics of the Hodgkin-Huxley equations were closely obeyed. Application of a negative prepulse to -180 mV delayed the rise of conductance by 20 musec at 7 degrees C without obviously changing tau m. Comparisons of the voltage dependence of tau m with that of the time constant tau 1 of the fast relaxation of the asymmetry current measured in the same axon, showed that tau 1 was smaller than tau m except at positive potentials, was less steeply voltage-dependent, and reached its maximum at a more positive potential.

摘要

在灌注了氟化铯并浸于低钠溶液中的枪乌贼巨轴突上,测量了正向电压钳制脉冲期间钠电导上升的时间进程。用河豚毒素阻断钠通道后记录的结果相减,消除了初始瞬变。按照霍奇金和赫胥黎(1952年)所定义的τm值,在膜电位约为-35mV时通过了一个明确的最大值。将INa上升的初始拐点拟合为mXh而非m3h表达式时,发现X值在不同轴突之间在2.9至4.4之间变化,平均为3.5。对于任何给定的轴突,X值不会随脉冲电位显著变化。从负向和正向接近每个膜电位值时都进行了τm的测量。霍奇金-赫胥黎方程的立方律动力学得到了严格遵守。在7℃时,施加-180mV的负预脉冲使电导上升延迟20微秒,而τm没有明显变化。将τm的电压依赖性与在同一轴突中测量的不对称电流快速弛豫的时间常数τ1的电压依赖性进行比较,结果表明,除了在正电位外,τ1小于τm,其电压依赖性较不陡峭,并且在更正的电位达到最大值。

相似文献

1
Kinetics of activation of the sodium conductance in the squid giant axon.
J Physiol. 1983 Mar;336:621-34. doi: 10.1113/jphysiol.1983.sp014601.
4
The effect of scorpion venoms on the sodium currents of the squid giant axon.
J Physiol. 1980 Nov;308:479-99. doi: 10.1113/jphysiol.1980.sp013484.
5
Sodium efflux from voltage clamped squid giant axons.
J Physiol. 1977 Mar;266(1):43-68. doi: 10.1113/jphysiol.1977.sp011755.
6
The effects of some inhalation anaesthetics on the sodium current of the squid giant axon.
J Physiol. 1983 Aug;341:429-39. doi: 10.1113/jphysiol.1983.sp014814.
7
Sodium currents in the giant axon of the crab Carcinus maenas.
J Membr Biol. 1982;66(3):159-69. doi: 10.1007/BF01868491.
8
Some effects of n-pentane on the sodium and potassium currents of the squid giant axon.
J Physiol. 1981 Mar;312:57-70. doi: 10.1113/jphysiol.1981.sp013615.
9
Kinetics of sodium activation in giant axons of squid (Doryteuthis bleekeri).
Neuroscience. 1985 Jan;14(1):327-34. doi: 10.1016/0306-4522(85)90182-4.

引用本文的文献

1
Gating currents.
J Gen Physiol. 2018 Jul 2;150(7):911-932. doi: 10.1085/jgp.201812090. Epub 2018 Jun 25.
3
The effect of local anaesthetics on the components of the asymmetry current in the squid giant axon.
J Physiol. 1984 Jul;352:653-68. doi: 10.1113/jphysiol.1984.sp015315.
4
Kinetics of sodium current and gating current in the frog node of Ranvier.
Pflugers Arch. 1986 Jul;407(1):18-26. doi: 10.1007/BF00580715.
7
A quantitative description of the sodium current in the rat sympathetic neurone.
J Physiol. 1986 Nov;380:275-91. doi: 10.1113/jphysiol.1986.sp016285.
8
A physical model of sodium channel gating.
Eur Biophys J. 1987;14(4):195-201. doi: 10.1007/BF00256352.
9
Gating current kinetics in Myxicola giant axons. Order of the back transition rate constants.
Biophys J. 1991 Mar;59(3):574-89. doi: 10.1016/S0006-3495(91)82273-1.

本文引用的文献

1
Potassium ion current in the squid giant axon: dynamic characteristic.
Biophys J. 1960 Sep;1(1):1-14. doi: 10.1016/s0006-3495(60)86871-3.
2
Ionic current measurements in the squid giant axon membrane.
J Gen Physiol. 1960 Sep;44(1):123-67. doi: 10.1085/jgp.44.1.123.
3
A quantitative description of membrane current and its application to conduction and excitation in nerve.
J Physiol. 1952 Aug;117(4):500-44. doi: 10.1113/jphysiol.1952.sp004764.
4
Sodium currents and sodium-current fluctuations in rat myelinated nerve fibres.
J Physiol. 1982 Aug;329:163-84. doi: 10.1113/jphysiol.1982.sp014296.
5
Some kinetic and steady-state properties of sodium channels after removal of inactivation.
J Gen Physiol. 1981 Jan;77(1):1-22. doi: 10.1085/jgp.77.1.1.
7
Fractionation of the asymmetry current in the squid giant axon into inactivating and non-inactivating components.
Proc R Soc Lond B Biol Sci. 1982 Jun 22;215(1200):375-89. doi: 10.1098/rspb.1982.0048.
10
Low-impedance capillary electrode for wide-band recording of membrane potential in large axons.
IEEE Trans Biomed Eng. 1973 Sep;20(5):380-2. doi: 10.1109/TBME.1973.324235.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验