Domyan Eric T, Guernsey Michael W, Kronenberg Zev, Krishnan Shreyas, Boissy Raymond E, Vickrey Anna I, Rodgers Clifford, Cassidy Pamela, Leachman Sancy A, Fondon John W, Yandell Mark, Shapiro Michael D
Department of Biology, University of Utah, Salt Lake City, UT 84112, USA.
Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
Curr Biol. 2014 Feb 17;24(4):459-64. doi: 10.1016/j.cub.2014.01.020. Epub 2014 Feb 6.
Understanding the molecular basis of phenotypic diversity is a critical challenge in biology, yet we know little about the mechanistic effects of different mutations and epistatic relationships among loci that contribute to complex traits. Pigmentation genetics offers a powerful model for identifying mutations underlying diversity and for determining how additional complexity emerges from interactions among loci. Centuries of artificial selection in domestic rock pigeons (Columba livia) have cultivated tremendous variation in plumage pigmentation through the combined effects of dozens of loci. The dominance and epistatic hierarchies of key loci governing this diversity are known through classical genetic studies, but their molecular identities and the mechanisms of their genetic interactions remain unknown. Here we identify protein-coding and cis-regulatory mutations in Tyrp1, Sox10, and Slc45a2 that underlie classical color phenotypes of pigeons and present a mechanistic explanation of their dominance and epistatic relationships. We also find unanticipated allelic heterogeneity at Tyrp1 and Sox10, indicating that color variants evolved repeatedly though mutations in the same genes. These results demonstrate how a spectrum of coding and regulatory mutations in a small number of genes can interact to generate substantial phenotypic diversity in a classic Darwinian model of evolution.
理解表型多样性的分子基础是生物学中的一项关键挑战,但我们对导致复杂性状的不同突变的机制效应以及基因座之间的上位关系知之甚少。色素沉着遗传学为识别多样性背后的突变以及确定基因座间相互作用如何产生额外复杂性提供了一个强大的模型。几个世纪以来,家鸽(Columba livia)的人工选择通过数十个基因座的综合作用,培育出了羽毛色素沉着的巨大差异。通过经典遗传学研究,已知控制这种多样性的关键基因座的显性和上位层次结构,但其分子身份及其遗传相互作用机制仍然未知。在这里,我们鉴定了Tyrp1、Sox10和Slc45a2中的蛋白质编码和顺式调控突变,这些突变是鸽子经典颜色表型的基础,并对它们的显性和上位关系给出了机制性解释。我们还在Tyrp1和Sox10中发现了意外的等位基因异质性,表明颜色变异通过同一基因中的突变反复进化。这些结果证明了少数基因中的一系列编码和调控突变如何相互作用,在经典的达尔文进化模型中产生大量的表型多样性。