Suppr超能文献

优化黑盒模型评估脑自动调节功能。

Optimising the assessment of cerebral autoregulation from black box models.

机构信息

School of Mechanical Engineering, University of Leeds, Leeds, UK.

Institute of Sound and Vibration Research, University of Southampton, Southampton, UK.

出版信息

Med Eng Phys. 2014 May;36(5):607-12. doi: 10.1016/j.medengphy.2013.12.012. Epub 2014 Feb 6.

Abstract

Cerebral autoregulation (CA) mechanisms maintain blood flow approximately stable despite changes in arterial blood pressure. Mathematical models that characterise this system have been used extensively in the quantitative assessment of function/impairment of CA. Using spontaneous fluctuations in arterial blood pressure (ABP) as input and cerebral blood flow velocity (CBFV) as output, the autoregulatory mechanism can be modelled using linear and non-linear approaches, from which indexes can be extracted to provide an overall assessment of CA. Previous studies have considered a single--or at most a couple of measures, making it difficult to compare the performance of different CA parameters. We compare the performance of established autoregulatory parameters and propose novel measures. The key objective is to identify which model and index can best distinguish between normal and impaired CA. To this end 26 recordings of ABP and CBFV from normocapnia and hypercapnia (which temporarily impairs CA) in 13 healthy adults were analysed. In the absence of a 'gold' standard for the study of dynamic CA, lower inter- and intra-subject variability of the parameters in relation to the difference between normo- and hypercapnia were considered as criteria for identifying improved measures of CA. Significantly improved performance compared to some conventional approaches was achieved, with the simplest method emerging as probably the most promising for future studies.

摘要

脑自动调节(CA)机制可确保血液流量在动脉血压变化时保持相对稳定。用于定量评估 CA 功能/损伤的数学模型已广泛应用于该系统。利用动脉血压(ABP)的自发性波动作为输入,脑血流速度(CBFV)作为输出,可采用线性和非线性方法对自动调节机制进行建模,从中提取出指标以全面评估 CA。先前的研究仅考虑了单一或最多几个指标,这使得比较不同 CA 参数的性能变得困难。我们比较了已建立的自动调节参数的性能,并提出了新的指标。主要目标是确定哪种模型和指标最能区分正常和受损的 CA。为此,我们分析了 13 位健康成年人在正常和高碳酸血症(暂时损害 CA)期间的 26 次 ABP 和 CBFV 记录。由于缺乏研究动态 CA 的“金标准”,我们认为,与正常和高碳酸血症之间的差异相比,参数的个体内和个体间变异性越低,表明其是识别改善 CA 指标的标准。与一些传统方法相比,该方法取得了显著提高,其中最简单的方法可能是未来研究最有前途的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验