Chacón Max, Jara José Luis, Miranda Rodrigo, Katsogridakis Emmanuel, Panerai Ronney B
Departamento de Ingeniería Informática, Universidad de Santiago de Chile, Santiago, Chile.
Department of Cardiovascular Science, University of Leicester, Leicester, United Kingdom.
PLoS One. 2018 Jan 30;13(1):e0191825. doi: 10.1371/journal.pone.0191825. eCollection 2018.
The ability to discriminate between normal and impaired dynamic cerebral autoregulation (CA), based on measurements of spontaneous fluctuations in arterial blood pressure (BP) and cerebral blood flow (CBF), has considerable clinical relevance. We studied 45 normal subjects at rest and under hypercapnia induced by breathing a mixture of carbon dioxide and air. Non-linear models with BP as input and CBF velocity (CBFV) as output, were implemented with support vector machines (SVM) using separate recordings for learning and validation. Dynamic SVM implementations used either moving average or autoregressive structures. The efficiency of dynamic CA was estimated from the model's derived CBFV response to a step change in BP as an autoregulation index for both linear and non-linear models. Non-linear models with recurrences (autoregressive) showed the best results, with CA indexes of 5.9 ± 1.5 in normocapnia, and 2.5 ± 1.2 for hypercapnia with an area under the receiver-operator curve of 0.955. The high performance achieved by non-linear SVM models to detect deterioration of dynamic CA should encourage further assessment of its applicability to clinical conditions where CA might be impaired.
基于动脉血压(BP)和脑血流量(CBF)自发波动的测量结果来区分正常和受损的动态脑自动调节(CA)的能力具有重要的临床意义。我们研究了45名静息状态下以及呼吸二氧化碳和空气混合气体诱发高碳酸血症时的正常受试者。以BP为输入、脑血流速度(CBFV)为输出的非线性模型,采用支持向量机(SVM)实现,使用单独的记录进行学习和验证。动态SVM实现使用移动平均或自回归结构。动态CA的效率通过模型推导的CBFV对BP阶跃变化的响应来估计,作为线性和非线性模型的自动调节指数。具有递归(自回归)的非线性模型显示出最佳结果,在正常碳酸血症时CA指数为5.9±1.5,高碳酸血症时为2.5±1.2,受试者工作特征曲线下面积为0.955。非线性SVM模型在检测动态CA恶化方面取得的高性能应促使进一步评估其在CA可能受损的临床情况下的适用性。