Suppr超能文献

粘弹性状态下聚合物表面的探测

Probing of polymer surfaces in the viscoelastic regime.

作者信息

Chyasnavichyus Marius, Young Seth L, Tsukruk Vladimir V

机构信息

School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States.

出版信息

Langmuir. 2014 Sep 9;30(35):10566-82. doi: 10.1021/la404925h. Epub 2014 Feb 21.

Abstract

In this Feature Article, we discussed the experimental and modeling methods and analyzed the limitations of the surface probing of nanomechanical properties of polymeric and biological materials in static and dynamic regimes with atomic force microscopy (AFM), which are widely utilized currently. To facilitate such measurements with minimized ambiguities, in this study we present a combined method to evaluate the viscoelastic properties of compliant polymeric materials. We collected force-distance data in the static regime for a benchmark polymer material (poly(n-butyl methacrylate)) with an easily accessible glass-transition temperature (about 25 °C) at different loading rates and different temperatures across the glassy state, glass-transition region, and rubbery state. For this analysis, we exploited a Johnson-modified Sneddon's approach in a combination with the standard linear solid model. Critical experimental steps suggested for robust probing are (i) the use of a tip with a well-characterized parabolic shape, (ii) probing in a liquid environment in order to reduce jump-in phenomenon, and (iii) minute indentations to ensure the absence of plastic deformation. Whereas the standard Sneddon's model generates quantitatively adequate elastic modulus values below and above the glass transition, this traditional approach can significantly underestimate actual modulus values in the vicinity of the glass-transition region (15 °C above or below Tg), with major deviations occurring at the loss tangent peak. The analysis of the experimental data with Sneddon's model for the elastic region (glassy and rubbery states) and Johnson's model for the viscoelastic region allowed for the restoration of the universal master curve and the evaluation of the storage modulus, loss modulus, loss tangent, relaxation times, and activation energies of the polymer surface across the glass-transition region and at relevant loading rates.

摘要

在这篇专题文章中,我们讨论了实验和建模方法,并分析了当前广泛使用的原子力显微镜(AFM)在静态和动态条件下对聚合物和生物材料纳米力学性能进行表面探测的局限性。为了以最小的模糊性促进此类测量,在本研究中,我们提出了一种联合方法来评估柔顺聚合物材料的粘弹性。我们在静态条件下,针对一种具有易于获取的玻璃化转变温度(约25°C)的基准聚合物材料(聚甲基丙烯酸正丁酯),在不同加载速率和跨越玻璃态、玻璃化转变区域及橡胶态的不同温度下收集力-距离数据。对于此分析,我们采用了约翰逊修正的斯内登方法并结合标准线性固体模型。为进行可靠探测建议的关键实验步骤包括:(i)使用具有特征明确的抛物线形状的探针;(ii)在液体环境中进行探测以减少跳变现象;(iii)进行微小压痕以确保不存在塑性变形。虽然标准的斯内登模型在玻璃化转变温度以下和以上能生成定量上足够的弹性模量值,但这种传统方法在玻璃化转变区域附近(高于或低于玻璃化转变温度15°C)会显著低估实际模量值,在损耗正切峰值处出现较大偏差。使用斯内登模型分析弹性区域(玻璃态和橡胶态)的实验数据以及约翰逊模型分析粘弹性区域的实验数据,能够恢复通用主曲线,并评估聚合物表面在玻璃化转变区域及相关加载速率下的储能模量、损耗模量、损耗正切、松弛时间和活化能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验