Chandrashekar Abhilash, Givois Arthur, Belardinelli Pierpaolo, Penning Casper L, Aragón Alejandro M, Staufer Urs, Alijani Farbod
Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Mekelweg 2, 2628 CD, Delft, The Netherlands.
DICEA, Polytechnic University of Marche, Ancona, Italy.
Soft Matter. 2022 Nov 30;18(46):8748-8755. doi: 10.1039/d2sm00482h.
Quantifying the nanomechanical properties of soft-matter using multi-frequency atomic force microscopy (AFM) is crucial for studying the performance of polymers, ultra-thin coatings, and biological systems. Such characterization processes often make use of cantilever's spectral components to discern nanomechanical properties within a multi-parameter optimization problem. This could inadvertently lead to an over-determined parameter estimation with no clear relation between the identified parameters and their influence on the experimental data. In this work, we explore the sensitivity of viscoelastic characterization in polymeric samples to the experimental observables of multi-frequency intermodulation AFM. By performing simulations and experiments we show that surface viscoelasticity has negligible effect on the experimental data and can lead to inconsistent and often non-physical identified parameters. Our analysis reveals that this lack of influence of the surface parameters relates to a vanishing gradient and non-convexity while minimizing the objective function. By removing the surface dependency from the model, we show that the characterization of bulk properties can be achieved with ease and without any ambiguity. Our work sheds light on the sensitivity issues that can be faced when optimizing for a large number of parameters and observables in AFM operation, and calls for the development of new viscoelastic models at the nanoscale and improved computational methodologies for nanoscale mapping of viscoelasticity using AFM.
使用多频原子力显微镜(AFM)量化软物质的纳米力学性能对于研究聚合物、超薄涂层和生物系统的性能至关重要。此类表征过程通常利用悬臂梁的光谱成分来识别多参数优化问题中的纳米力学性能。这可能会无意中导致参数估计过度确定,且所识别的参数与其对实验数据的影响之间没有明确关系。在这项工作中,我们探索了聚合物样品中粘弹性表征对多频互调AFM实验可观测量的敏感性。通过进行模拟和实验,我们表明表面粘弹性对实验数据的影响可忽略不计,并且可能导致不一致且往往不符合物理实际的识别参数。我们的分析表明,表面参数缺乏这种影响与在最小化目标函数时梯度消失和非凸性有关。通过从模型中消除表面依赖性,我们表明可以轻松实现对本体性能的表征且没有任何模糊性。我们的工作揭示了在AFM操作中针对大量参数和可观测量进行优化时可能面临的敏感性问题,并呼吁开发新的纳米级粘弹性模型以及改进用于使用AFM进行粘弹性纳米级映射的计算方法。