Suppr超能文献

一种使用离散积分变换技术从原子力显微镜实验中获取无模型粘弹性材料特性的新方法。

A new method for obtaining model-free viscoelastic material properties from atomic force microscopy experiments using discrete integral transform techniques.

作者信息

Uluutku Berkin, López-Guerra Enrique A, Solares Santiago D

机构信息

Department of Mechanical and Aerospace Engineering, The George Washington University School of Engineering and Applied Science, Washington, District of Columbia, USA.

出版信息

Beilstein J Nanotechnol. 2021 Sep 23;12:1063-1077. doi: 10.3762/bjnano.12.79. eCollection 2021.

Abstract

Viscoelastic characterization of materials at the micro- and the nanoscale is commonly performed with the aid of force-distance relationships acquired using atomic force microscopy (AFM). The general strategy for existing methods is to fit the observed material behavior to specific viscoelastic models, such as generalized viscoelastic models or power-law rheology models, among others. Here we propose a new method to invert and obtain the viscoelastic properties of a material through the use of the Z-transform, without using a model. We present the rheological viscoelastic relations in their classical derivation and their -domain correspondence. We illustrate the proposed technique on a model experiment involving a traditional ramp-shaped force-distance AFM curve, demonstrating good agreement between the viscoelastic characteristics extracted from the simulated experiment and the theoretical expectations. We also provide a path for calculating standard viscoelastic responses from the extracted material characteristics. The new technique based on the Z-transform is complementary to previous model-based viscoelastic analyses and can be advantageous with respect to Fourier techniques due to its generality. Additionally, it can handle the unbounded inputs traditionally used to acquire force-distance relationships in AFM, such as ramp functions, in which the cantilever position is displaced linearly with time for a finite period of time.

摘要

在微观和纳米尺度上对材料进行粘弹性表征通常借助使用原子力显微镜(AFM)获得的力-距离关系来完成。现有方法的一般策略是将观察到的材料行为拟合到特定的粘弹性模型,例如广义粘弹性模型或幂律流变模型等。在此,我们提出一种新方法,通过使用Z变换来反演并获得材料的粘弹性特性,而无需使用模型。我们给出了流变粘弹性关系的经典推导及其在z域的对应关系。我们在一个涉及传统斜坡形力-距离AFM曲线的模型实验中说明了所提出的技术,证明了从模拟实验中提取的粘弹性特性与理论预期之间的良好一致性。我们还提供了一条从提取的材料特性计算标准粘弹性响应的途径。基于Z变换的新技术是对先前基于模型的粘弹性分析的补充,并且由于其通用性,相对于傅里叶技术可能具有优势。此外,它可以处理传统上用于在AFM中获取力-距离关系的无界输入,例如斜坡函数,其中悬臂位置在有限时间段内随时间线性位移。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7acb/8474069/6776bcc580f9/Beilstein_J_Nanotechnol-12-1063-g002.jpg

相似文献

3
Enhancing nanoscale viscoelasticity characterization in bimodal atomic force microscopy.
Soft Matter. 2024 Sep 25;20(37):7457-7470. doi: 10.1039/d4sm00671b.
4
Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy.
Beilstein J Nanotechnol. 2020 Jun 16;11:922-937. doi: 10.3762/bjnano.11.77. eCollection 2020.
6
Imaging viscoelastic properties of live cells by AFM: power-law rheology on the nanoscale.
Soft Matter. 2015 Jun 21;11(23):4584-4591. doi: 10.1039/c4sm02718c.
8
Viscoelastic Properties of Confluent MDCK II Cells Obtained from Force Cycle Experiments.
Biophys J. 2017 Feb 28;112(4):724-735. doi: 10.1016/j.bpj.2016.12.032.
9
Nanoscale Rheology: Dynamic Mechanical Analysis over a Broad and Continuous Frequency Range Using Photothermal Actuation Atomic Force Microscopy.
Macromolecules. 2024 Jan 16;57(3):1118-1127. doi: 10.1021/acs.macromol.3c02052. eCollection 2024 Feb 13.
10
Nanorheology of living cells measured by AFM-based force-distance curves.
Nanoscale. 2020 Apr 28;12(16):9133-9143. doi: 10.1039/c9nr10316c. Epub 2020 Apr 15.

引用本文的文献

1
Advances in nanomechanical property mapping by atomic force microscopy.
Nanoscale Adv. 2025 Aug 26. doi: 10.1039/d5na00702j.
2
Multiplexed Nanoscale Viscoelastic Mapping at Multiple Time Scales of Melanoma Cells as a Label-Free Cancer Biomarker.
ACS Nano. 2025 Aug 19;19(32):29109-29121. doi: 10.1021/acsnano.5c01873. Epub 2025 Aug 4.
3
Frequency-dependent nanomechanical profiling for medical diagnosis.
Beilstein J Nanotechnol. 2022 Dec 9;13:1483-1489. doi: 10.3762/bjnano.13.122. eCollection 2022.

本文引用的文献

1
Extracting viscoelastic material parameters using an atomic force microscope and static force spectroscopy.
Beilstein J Nanotechnol. 2020 Jun 16;11:922-937. doi: 10.3762/bjnano.11.77. eCollection 2020.
2
Nanorheology of living cells measured by AFM-based force-distance curves.
Nanoscale. 2020 Apr 28;12(16):9133-9143. doi: 10.1039/c9nr10316c. Epub 2020 Apr 15.
3
Few-cycle Regime Atomic Force Microscopy.
Sci Rep. 2019 Sep 3;9(1):12721. doi: 10.1038/s41598-019-49104-1.
5
Theory of Single-Impact Atomic Force Spectroscopy in liquids with material contrast.
Sci Rep. 2018 May 14;8(1):7534. doi: 10.1038/s41598-018-25828-4.
6
Time-resolved nanomechanics of a single cell under the depolymerization of the cytoskeleton.
Nanoscale. 2017 Aug 24;9(33):12051-12059. doi: 10.1039/c7nr03419a.
7
Mapping Elastic Properties of Heterogeneous Materials in Liquid with Angstrom-Scale Resolution.
ACS Nano. 2017 Sep 26;11(9):8650-8659. doi: 10.1021/acsnano.7b04381. Epub 2017 Aug 3.
9
Probing of polymer surfaces in the viscoelastic regime.
Langmuir. 2014 Sep 9;30(35):10566-82. doi: 10.1021/la404925h. Epub 2014 Feb 21.
10
Fast nanomechanical spectroscopy of soft matter.
Nat Commun. 2014;5:3126. doi: 10.1038/ncomms4126.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验