Suppr超能文献

通过超宽带雷达检测呼吸活动时,针对身体运动存在情况下的杂波抑制技术。

Techniques for clutter suppression in the presence of body movements during the detection of respiratory activity through UWB radars.

机构信息

Department of Electronic, Electric and Automatic Control Engineering, Universitat Rovira i Virgili (URV), Av. Països Catalans 26, Campus Sescelades, Tarragona 43007, Spain.

出版信息

Sensors (Basel). 2014 Feb 7;14(2):2595-618. doi: 10.3390/s140202595.

Abstract

This paper focuses on the feasibility of tracking the chest wall movement of a human subject during respiration from the waveforms recorded using an impulse-radio (IR) ultra-wideband radar. The paper describes the signal processing to estimate sleep apnea detection and breathing rate. Some techniques to solve several problems in these types of measurements, such as the clutter suppression, body movement and body orientation detection are described. Clutter suppression is achieved using a moving averaging filter to dynamically estimate it. The artifacts caused by body movements are removed using a threshold method before analyzing the breathing signal. The motion is detected using the time delay that maximizes the received signal after a clutter removing algorithm is applied. The periods in which the standard deviations of the time delay exceed a threshold are considered macro-movements and they are neglected. The sleep apnea intervals are detected when the breathing signal is below a threshold. The breathing rate is determined from the robust spectrum estimation based on Lomb periodogram algorithm. On the other hand the breathing signal amplitude depends on the body orientation respect to the antennas, and this could be a problem. In this case, in order to maximize the signal-to-noise ratio, multiple sensors are proposed to ensure that the backscattered signal can be detected by at least one sensor, regardless of the direction the human subject is facing. The feasibility of the system is compared with signals recorded by a microphone.

摘要

本文专注于从使用冲激无线电(IR)超宽带雷达记录的波形中跟踪人体胸部运动的可行性研究。本文描述了用于估计睡眠呼吸暂停检测和呼吸率的信号处理方法。描述了一些解决这些类型测量中存在的问题的技术,例如杂波抑制、身体运动和身体方向检测。杂波抑制是通过使用移动平均滤波器来动态估计实现的。在分析呼吸信号之前,使用阈值方法去除由身体运动引起的伪影。通过应用杂波去除算法后,接收信号的最大时间延迟来检测运动。将时间延迟的标准偏差超过阈值的时间段视为宏观运动,并忽略它们。当呼吸信号低于阈值时,检测睡眠呼吸暂停间隔。呼吸率是通过基于 Lomb 周期图算法的稳健频谱估计来确定的。另一方面,呼吸信号幅度取决于身体相对于天线的方向,这可能是一个问题。在这种情况下,为了最大化信噪比,提出了多个传感器,以确保无论人体面对的方向如何,至少有一个传感器可以检测到反向散射信号。系统的可行性与麦克风记录的信号进行了比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3d96/3958278/9adbec20080f/sensors-14-02595f1a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验