文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

线粒体中的 2-氧酸脱氢酶复合物可以比复合物 I 以更高的速率产生超氧阴离子/过氧化氢。

The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I.

机构信息

From The Buck Institute for Research on Aging, Novato, California 94945.

出版信息

J Biol Chem. 2014 Mar 21;289(12):8312-25. doi: 10.1074/jbc.M113.545301. Epub 2014 Feb 10.


DOI:10.1074/jbc.M113.545301
PMID:24515115
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3961658/
Abstract

Several flavin-dependent enzymes of the mitochondrial matrix utilize NAD(+) or NADH at about the same operating redox potential as the NADH/NAD(+) pool and comprise the NADH/NAD(+) isopotential enzyme group. Complex I (specifically the flavin, site IF) is often regarded as the major source of matrix superoxide/H2O2 production at this redox potential. However, the 2-oxoglutarate dehydrogenase (OGDH), branched-chain 2-oxoacid dehydrogenase (BCKDH), and pyruvate dehydrogenase (PDH) complexes are also capable of considerable superoxide/H2O2 production. To differentiate the superoxide/H2O2-producing capacities of these different mitochondrial sites in situ, we compared the observed rates of H2O2 production over a range of different NAD(P)H reduction levels in isolated skeletal muscle mitochondria under conditions that favored superoxide/H2O2 production from complex I, the OGDH complex, the BCKDH complex, or the PDH complex. The rates from all four complexes increased at higher NAD(P)H/NAD(P)(+) ratios, although the 2-oxoacid dehydrogenase complexes produced superoxide/H2O2 at high rates only when oxidizing their specific 2-oxoacid substrates and not in the reverse reaction from NADH. At optimal conditions for each system, superoxide/H2O2 was produced by the OGDH complex at about twice the rate from the PDH complex, four times the rate from the BCKDH complex, and eight times the rate from site IF of complex I. Depending on the substrates present, the dominant sites of superoxide/H2O2 production at the level of NADH may be the OGDH and PDH complexes, but these activities may often be misattributed to complex I.

摘要

几种线粒体基质中的黄素依赖酶以与 NADH/NAD+ 池大致相同的工作氧化还原电势利用 NAD+(+) 或 NADH,它们构成了 NADH/NAD+(+) 等电势酶组。复合物 I(特别是黄素,IF 位点)通常被认为是该氧化还原电势下基质超氧阴离子/H2O2 产生的主要来源。然而,2-酮戊二酸脱氢酶(OGDH)、支链 2-酮酸脱氢酶(BCKDH)和丙酮酸脱氢酶(PDH)复合物也能够产生相当数量的超氧阴离子/H2O2。为了区分这些不同线粒体部位在原位的超氧阴离子/H2O2 产生能力,我们比较了在有利于复合物 I、OGDH 复合物、BCKDH 复合物或 PDH 复合物产生超氧阴离子/H2O2 的条件下,在不同 NAD(P)H 还原水平范围内观察到的孤立骨骼肌线粒体中 H2O2 产生的速率。所有四个复合物的速率都随着 NAD(P)H/NAD(P)+ 比值的增加而增加,尽管 2-氧酸脱氢酶复合物只有在氧化其特定的 2-氧酸底物时才以高速率产生超氧阴离子/H2O2,而不是在从 NADH 的相反反应中。在每个系统的最佳条件下,OGDH 复合物产生的超氧阴离子/H2O2 的速率约为 PDH 复合物的两倍,BCKDH 复合物的四倍,以及复合物 I 的 IF 位点的八倍。根据存在的底物,NADH 水平上超氧阴离子/H2O2 的主要产生部位可能是 OGDH 和 PDH 复合物,但这些活性通常可能被错误地归因于复合物 I。

相似文献

[1]
The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I.

J Biol Chem. 2014-2-10

[2]
Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex.

Free Radic Biol Med. 2016-2

[3]
Protein S-glutathionylation alters superoxide/hydrogen peroxide emission from pyruvate dehydrogenase complex.

Free Radic Biol Med. 2017-5

[4]
2-Oxoglutarate dehydrogenase is a more significant source of O2(·-)/H2O2 than pyruvate dehydrogenase in cardiac and liver tissue.

Free Radic Biol Med. 2016-8

[5]
Sites of reactive oxygen species generation by mitochondria oxidizing different substrates.

Redox Biol. 2013-5-23

[6]
Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species.

J Neurosci. 2004-9-8

[7]
Generation of superoxide and hydrogen peroxide by side reactions of mitochondrial 2-oxoacid dehydrogenase complexes in isolation and in cells.

Biol Chem. 2018-4-25

[8]
The glutathionylation agent disulfiram augments superoxide/hydrogen peroxide production when liver mitochondria are oxidizing ubiquinone pool-linked and branched chain amino acid substrates.

Free Radic Biol Med. 2021-8-20

[9]
Sources of superoxide/H2O2 during mitochondrial proline oxidation.

Redox Biol. 2014-7-18

[10]
Induction of mitochondrial reactive oxygen species production by GSH mediated S-glutathionylation of 2-oxoglutarate dehydrogenase.

Redox Biol. 2016-8

引用本文的文献

[1]
An emerging role of mitochondrial quality control in bone metabolism: from molecular mechanisms to targeted therapeutic interventions.

Cell Mol Life Sci. 2025-7-29

[2]
Metformin suppresses the mitochondrial and transcriptional response to exercise, revealing a conserved BCL6B-associated angiogenic program.

J Appl Physiol (1985). 2025-8-1

[3]
Ischemia/reperfusion-associated oxidative stress is an aggravating factor for pressure ulcers.

J Clin Biochem Nutr. 2025-5

[4]
CoQ imbalance drives reverse electron transport to disrupt liver metabolism.

Nature. 2025-5-28

[5]
Targeted Redox Regulation α-Ketoglutarate Dehydrogenase Complex for the Treatment of Human Diseases.

Cells. 2025-4-29

[6]
The molecular determinants regulating redox signaling in diabetic endothelial cells.

Front Pharmacol. 2025-4-1

[7]
MitoSNO inhibits mitochondrial hydrogen peroxide generation by α-ketoglutarate dehydrogenase.

J Biol Chem. 2025-4-16

[8]
Dysregulation of mitochondrial α-ketoglutarate dehydrogenase leads to elevated lipid peroxidation in CHCHD2-linked Parkinson's disease models.

Nat Commun. 2025-2-26

[9]
Ferroptosis: iron release mechanisms in the bioenergetic process.

Cancer Metastasis Rev. 2025-2-25

[10]
Facts, Dogmas, and Unknowns About Mitochondrial Reactive Oxygen Species in Cancer.

Antioxidants (Basel). 2024-12-19

本文引用的文献

[1]
Mitochondrial glutathione depletion reveals a novel role for the pyruvate dehydrogenase complex as a key H2O2-emitting source under conditions of nutrient overload.

Free Radic Biol Med. 2013-12

[2]
Sites of reactive oxygen species generation by mitochondria oxidizing different substrates.

Redox Biol. 2013-5-23

[3]
Molecular dynamics study of the structural basis of dysfunction and the modulation of reactive oxygen species generation by pathogenic mutants of human dihydrolipoamide dehydrogenase.

Arch Biochem Biophys. 2013-9-3

[4]
Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening.

Free Radic Biol Med. 2013-12

[5]
The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production.

Methods Enzymol. 2013

[6]
The role of mitochondrial function and cellular bioenergetics in ageing and disease.

Br J Dermatol. 2013-7

[7]
Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria.

Free Radic Biol Med. 2013-8

[8]
Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I.

Biochim Biophys Acta. 2013-3

[9]
A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase.

J Biol Chem. 2012-11-2

[10]
Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters.

Free Radic Biol Med. 2012-8-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索