Joseph Henry Laboratories of Physics, Lewis-Sigler Institute for Integrative Genomics, and Howard Hughes Medical Institute, Princeton University, Princeton, NJ 08544.
Proc Natl Acad Sci U S A. 2014 Mar 11;111(10):3683-8. doi: 10.1073/pnas.1324186111. Epub 2014 Feb 10.
Spatial patterns in the early fruit fly embryo emerge from a network of interactions among transcription factors, the gap genes, driven by maternal inputs. Such networks can exhibit many qualitatively different behaviors, separated by critical surfaces. At criticality, we should observe strong correlations in the fluctuations of different genes around their mean expression levels, a slowing of the dynamics along some but not all directions in the space of possible expression levels, correlations of expression fluctuations over long distances in the embryo, and departures from a Gaussian distribution of these fluctuations. Analysis of recent experiments on the gap gene network shows that all these signatures are observed, and that the different signatures are related in ways predicted by theory. Although there might be other explanations for these individual phenomena, the confluence of evidence suggests that this genetic network is tuned to criticality.
果蝇胚胎早期的空间模式是由转录因子和间隙基因之间的相互作用网络产生的,这些网络受到母体输入的驱动。这种网络可以表现出许多定性不同的行为,由临界表面分隔。在临界点,我们应该观察到不同基因在其平均表达水平周围的波动之间存在强烈的相关性,在可能的表达水平空间中,一些但不是所有方向的动力学都会减慢,胚胎中长距离的表达波动之间存在相关性,以及这些波动的高斯分布的偏离。对间隙基因网络的最新实验分析表明,所有这些特征都被观察到,并且不同的特征以理论预测的方式相关。尽管这些单个现象可能有其他解释,但这些证据的汇聚表明,这个遗传网络被调谐到了临界点。