Suppr超能文献

疏水性和静电残基对 SARS-CoV S2 蛋白稳定性的影响:对一般病毒融合机制和抑制剂设计的深入了解。

Influence of hydrophobic and electrostatic residues on SARS-coronavirus S2 protein stability: insights into mechanisms of general viral fusion and inhibitor design.

机构信息

Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, M5S 1A8, Canada.

出版信息

Protein Sci. 2014 May;23(5):603-17. doi: 10.1002/pro.2442. Epub 2014 Mar 19.

Abstract

Severe acute respiratory syndrome (SARS) is an acute respiratory disease caused by the SARS-coronavirus (SARS-CoV). SARS-CoV entry is facilitated by the spike protein (S), which consists of an N-terminal domain (S1) responsible for cellular attachment and a C-terminal domain (S2) that mediates viral and host cell membrane fusion. The SARS-CoV S2 is a potential drug target, as peptidomimetics against S2 act as potent fusion inhibitors. In this study, site-directed mutagenesis and thermal stability experiments on electrostatic, hydrophobic, and polar residues to dissect their roles in stabilizing the S2 postfusion conformation was performed. It was shown that unlike the pH-independent retroviral fusion proteins, SARS-CoV S2 is stable over a wide pH range, supporting its ability to fuse at both the plasma membrane and endosome. A comprehensive SARS-CoV S2 analysis showed that specific hydrophobic positions at the C-terminal end of the HR2, rather than electrostatics are critical for fusion protein stabilization. Disruption of the conserved C-terminal hydrophobic residues destabilized the fusion core and reduced the melting temperature by 30°C. The importance of the C-terminal hydrophobic residues led us to identify a 42-residue substructure on the central core that is structurally conserved in all existing CoV S2 fusion proteins (root mean squared deviation=0.4 Å). This is the first study to identify such a conserved substructure and likely represents a common foundation to facilitate viral fusion. We have discussed the role of key residues in the design of fusion inhibitors and the potential of the substructure as a general target for the development of novel therapeutics against CoV infections.

摘要

严重急性呼吸系统综合症(SARS)是一种由 SARS 冠状病毒(SARS-CoV)引起的急性呼吸道疾病。SARS-CoV 的进入是由刺突蛋白(S)介导的,该蛋白由负责细胞附着的 N 端结构域(S1)和介导病毒和宿主细胞膜融合的 C 端结构域(S2)组成。SARS-CoV 的 S2 是一个潜在的药物靶点,因为针对 S2 的肽模拟物可以作为有效的融合抑制剂。在这项研究中,对静电、疏水和极性残基进行了定点突变和热稳定性实验,以剖析它们在稳定 S2 融合后构象中的作用。结果表明,与 pH 不依赖的逆转录病毒融合蛋白不同,SARS-CoV S2 在很宽的 pH 范围内是稳定的,这支持了它在质膜和内体中融合的能力。对 SARS-CoV S2 的全面分析表明,HR2 末端的特定疏水位置,而不是静电作用,对融合蛋白的稳定性至关重要。破坏保守的 C 末端疏水残基会使融合核心失稳,并使熔点降低 30°C。C 末端疏水残基的重要性使我们在所有现有 CoV S2 融合蛋白的核心结构上确定了一个 42 个残基的亚结构(均方根偏差=0.4 Å)。这是首次确定这样一个保守亚结构的研究,可能代表了促进病毒融合的共同基础。我们讨论了关键残基在融合抑制剂设计中的作用,以及该亚结构作为开发针对 CoV 感染的新型治疗药物的通用靶点的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe0d/4005712/ff1ef0142403/pro0023-0603-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验