Suppr超能文献

单细胞水平的异质性耐药:通过群体策略和生长控制的表型间协调适应抗生素压力

Heteroresistance at the single-cell level: adapting to antibiotic stress through a population-based strategy and growth-controlled interphenotypic coordination.

作者信息

Wang Xiaorong, Kang Yu, Luo Chunxiong, Zhao Tong, Liu Lin, Jiang Xiangdan, Fu Rongrong, An Shuchang, Chen Jichao, Jiang Ning, Ren Lufeng, Wang Qi, Baillie J Kenneth, Gao Zhancheng, Yu Jun

出版信息

mBio. 2014 Feb 11;5(1):e00942-13. doi: 10.1128/mBio.00942-13.

Abstract

UNLABELLED

Heteroresistance refers to phenotypic heterogeneity of microbial clonal populations under antibiotic stress, and it has been thought to be an allocation of a subset of "resistant" cells for surviving in higher concentrations of antibiotic. The assumption fits the so-called bet-hedging strategy, where a bacterial population "hedges" its "bet" on different phenotypes to be selected by unpredicted environment stresses. To test this hypothesis, we constructed a heteroresistance model by introducing a blaCTX-M-14 gene (coding for a cephalosporin hydrolase) into a sensitive Escherichia coli strain. We confirmed heteroresistance in this clone and that a subset of the cells expressed more hydrolase and formed more colonies in the presence of ceftriaxone (exhibited stronger "resistance"). However, subsequent single-cell-level investigation by using a microfluidic device showed that a subset of cells with a distinguishable phenotype of slowed growth and intensified hydrolase expression emerged, and they were not positively selected but increased their proportion in the population with ascending antibiotic concentrations. Therefore, heteroresistance--the gradually decreased colony-forming capability in the presence of antibiotic--was a result of a decreased growth rate rather than of selection for resistant cells. Using a mock strain without the resistance gene, we further demonstrated the existence of two nested growth-centric feedback loops that control the expression of the hydrolase and maximize population growth in various antibiotic concentrations. In conclusion, phenotypic heterogeneity is a population-based strategy beneficial for bacterial survival and propagation through task allocation and interphenotypic collaboration, and the growth rate provides a critical control for the expression of stress-related genes and an essential mechanism in responding to environmental stresses.

IMPORTANCE

Heteroresistance is essentially phenotypic heterogeneity, where a population-based strategy is thought to be at work, being assumed to be variable cell-to-cell resistance to be selected under antibiotic stress. Exact mechanisms of heteroresistance and its roles in adaptation to antibiotic stress have yet to be fully understood at the molecular and single-cell levels. In our study, we have not been able to detect any apparent subset of "resistant" cells selected by antibiotics; on the contrary, cell populations differentiate into phenotypic subsets with variable growth statuses and hydrolase expression. The growth rate appears to be sensitive to stress intensity and plays a key role in controlling hydrolase expression at both the bulk population and single-cell levels. We have shown here, for the first time, that phenotypic heterogeneity can be beneficial to a growing bacterial population through task allocation and interphenotypic collaboration other than partitioning cells into different categories of selective advantage.

摘要

未标记

异质性耐药是指微生物克隆群体在抗生素压力下的表型异质性,人们认为这是一部分“耐药”细胞为在更高浓度抗生素环境中存活而进行的一种分配方式。这一假设符合所谓的风险对冲策略,即细菌群体在不同表型上“对冲”其“赌注”,以便在不可预测的环境压力下被选择。为了验证这一假设,我们通过将blaCTX-M-14基因(编码一种头孢菌素水解酶)导入一株敏感的大肠杆菌菌株中构建了一个异质性耐药模型。我们证实了该克隆体中存在异质性耐药,并且在头孢曲松存在的情况下,一部分细胞表达了更多的水解酶并形成了更多菌落(表现出更强的“耐药性”)。然而,随后使用微流控装置进行的单细胞水平研究表明,出现了一部分具有生长缓慢和水解酶表达增强这一可区分表型的细胞,它们并没有被正向选择,而是随着抗生素浓度的升高在群体中的比例增加。因此,异质性耐药——在抗生素存在下菌落形成能力逐渐下降——是生长速率降低的结果,而非对耐药细胞进行选择的结果。使用一株没有耐药基因的模拟菌株,我们进一步证明了存在两个嵌套的以生长为中心的反馈回路,它们控制水解酶的表达并在不同抗生素浓度下使群体生长最大化。总之,表型异质性是一种基于群体的策略,通过任务分配和表型间协作有利于细菌的生存和繁殖,并且生长速率为应激相关基因的表达提供关键控制,是应对环境压力的重要机制。

重要性

异质性耐药本质上是表型异质性,人们认为这是一种基于群体的策略在起作用,假定是细胞间对抗生素压力具有可变的耐药性。在分子和单细胞水平上,异质性耐药的确切机制及其在适应抗生素压力中的作用尚未完全明了。在我们的研究中,我们未能检测到任何明显的被抗生素选择的“耐药”细胞亚群;相反,细胞群体分化为具有不同生长状态和水解酶表达的表型亚群。生长速率似乎对应激强度敏感,并且在群体和单细胞水平上控制水解酶表达方面都起着关键作用。我们首次在此表明,表型异质性除了将细胞划分为不同类别的选择优势外,还可通过任务分配和表型间协作对生长中的细菌群体有益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cb5e/3950525/9196d1444c09/mbo0011417380001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验