Suppr超能文献

使用 Squassh 对荧光显微镜图像中的亚细胞结构进行分割和定量。

Segmentation and quantification of subcellular structures in fluorescence microscopy images using Squassh.

机构信息

1] Paul Scherrer Institute, Biomolecular Research, Molecular Cell Biology, Villigen PSI, Switzerland. [2] MOSAIC Group, Center of Systems Biology Dresden, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.

1] MOSAIC Group, Center of Systems Biology Dresden, Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany. [2].

出版信息

Nat Protoc. 2014 Mar;9(3):586-96. doi: 10.1038/nprot.2014.037. Epub 2014 Feb 13.

Abstract

Detection and quantification of fluorescently labeled molecules in subcellular compartments is a key step in the analysis of many cell biological processes. Pixel-wise colocalization analyses, however, are not always suitable, because they do not provide object-specific information, and they are vulnerable to noise and background fluorescence. Here we present a versatile protocol for a method named 'Squassh' (segmentation and quantification of subcellular shapes), which is used for detecting, delineating and quantifying subcellular structures in fluorescence microscopy images. The workflow is implemented in freely available, user-friendly software. It works on both 2D and 3D images, accounts for the microscope optics and for uneven image background, computes cell masks and provides subpixel accuracy. The Squassh software enables both colocalization and shape analyses. The protocol can be applied in batch, on desktop computers or computer clusters, and it usually requires <1 min and <5 min for 2D and 3D images, respectively. Basic computer-user skills and some experience with fluorescence microscopy are recommended to successfully use the protocol.

摘要

在亚细胞隔室中检测和定量荧光标记分子是分析许多细胞生物学过程的关键步骤。然而,逐像素共定位分析并不总是适用,因为它们不能提供特定于对象的信息,并且容易受到噪声和背景荧光的影响。在这里,我们提出了一种名为“Squassh”(亚细胞形状的分割和定量)的方法的通用协议,该方法用于在荧光显微镜图像中检测、描绘和定量亚细胞结构。工作流程在免费、用户友好的软件中实现。它适用于 2D 和 3D 图像,考虑了显微镜光学和不均匀的图像背景,计算细胞掩模并提供亚像素精度。Squassh 软件支持共定位和形状分析。该协议可以批量应用,在台式计算机或计算机群集上运行,分别用于 2D 和 3D 图像时,通常需要 <1 分钟和 <5 分钟。建议具有基本的计算机用户技能和一些荧光显微镜经验,以成功使用该协议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验