Dantas Joana M, Morgado Leonor, Catarino Teresa, Kokhan Oleksandr, Pokkuluri P Raj, Salgueiro Carlos A
Requimte-CQFB, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus Caparica, 2829-516 Caparica, Portugal.
Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal; Departamento de Química, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
Biochim Biophys Acta. 2014 Jun;1837(6):750-60. doi: 10.1016/j.bbabio.2014.02.004. Epub 2014 Feb 12.
The bacterium Geobacter sulfurreducens displays an extraordinary respiratory versatility underpinning the diversity of electron donors and acceptors that can be used to sustain anaerobic growth. Remarkably, G. sulfurreducens can also use as electron donors the reduced forms of some acceptors, such as the humic substance analog anthraquinone-2,6-disulfonate (AQDS), a feature that confers environmentally competitive advantages to the organism. Using UV-visible and stopped-flow kinetic measurements we demonstrate that there is electron exchange between the triheme cytochrome PpcA from Gs and AQDS. 2D-(1)H-(15)N HSQC NMR spectra were recorded for (15)N-enriched PpcA samples, in the absence and presence of AQDS. Chemical shift perturbation measurements, at increasing concentration of AQDS, were used to probe the interaction region and to measure the binding affinity of the PpcA-AQDS complex. The perturbations on the NMR signals corresponding to the PpcA backbone NH and heme substituents showed that the region around heme IV interacts with AQDS through the formation of a complex with a definite life time in the NMR time scale. The comparison of the NMR data obtained for PpcA in the presence and absence of AQDS showed that the interaction is reversible. Overall, this study provides for the first time a clear illustration of the formation of an electron transfer complex between AQDS and a G. sulfurreducens triheme cytochrome, shedding light on the electron transfer pathways underlying the microbial oxidation of humics.
硫还原地杆菌在厌氧生长过程中展现出非凡的呼吸多样性,这使得它能够利用多种电子供体和受体。值得注意的是,硫还原地杆菌还能将某些受体的还原形式用作电子供体,比如腐殖质类似物蒽醌 - 2,6 - 二磺酸盐(AQDS),这一特性赋予了该生物体在环境中的竞争优势。通过紫外可见光谱和停流动力学测量,我们证明了来自硫还原地杆菌的三血红素细胞色素PpcA与AQDS之间存在电子交换。我们记录了在有无AQDS存在的情况下,富含¹⁵N的PpcA样品的二维¹H - ¹⁵N HSQC NMR光谱。通过增加AQDS浓度进行化学位移扰动测量,以探测相互作用区域并测量PpcA - AQDS复合物的结合亲和力。对应于PpcA主链NH和血红素取代基的NMR信号的扰动表明,血红素IV周围的区域通过在NMR时间尺度上形成具有确定寿命的复合物与AQDS相互作用。有无AQDS时PpcA的NMR数据比较表明,这种相互作用是可逆的。总体而言,这项研究首次清晰地阐明了AQDS与硫还原地杆菌三血红素细胞色素之间形成电子转移复合物的过程,为腐殖质微生物氧化背后的电子转移途径提供了线索。