Marzolf Daniel R, McKenzie Aidan M, O'Malley Matthew C, Ponomarenko Nina S, Swaim Coleman M, Brittain Tyler J, Simmons Natalie L, Pokkuluri Phani Raj, Mulfort Karen L, Tiede David M, Kokhan Oleksandr
Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, VA 22807, USA.
Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, USA.
Nanomaterials (Basel). 2020 Oct 28;10(11):2143. doi: 10.3390/nano10112143.
Efficient nanomaterials for artificial photosynthesis require fast and robust unidirectional electron transfer (ET) from photosensitizers through charge-separation and accumulation units to redox-active catalytic sites. We explored the ultrafast time-scale limits of photo-induced charge transfer between a Ru(II)tris(bipyridine) derivative photosensitizer and PpcA, a 3-heme c-type cytochrome serving as a nanoscale biological wire. Four covalent attachment sites (K28C, K29C, K52C, and G53C) were engineered in PpcA enabling site-specific covalent labeling with expected donor-acceptor (DA) distances of 4-8 Å. X-ray scattering results demonstrated that mutations and chemical labeling did not disrupt the structure of the proteins. Time-resolved spectroscopy revealed three orders of magnitude difference in charge transfer rates for the systems with otherwise similar DA distances and the same number of covalent bonds separating donors and acceptors. All-atom molecular dynamics simulations provided additional insight into the structure-function requirements for ultrafast charge transfer and the requirement of van der Waals contact between aromatic atoms of photosensitizers and hemes in order to observe sub-nanosecond ET. This work demonstrates opportunities to utilize multi-heme c-cytochromes as frameworks for designing ultrafast light-driven ET into charge-accumulating biohybrid model systems, and ultimately for mimicking the photosynthetic paradigm of efficiently coupling ultrafast, light-driven electron transfer chemistry to multi-step catalysis within small, experimentally versatile photosynthetic biohybrid assemblies.
用于人工光合作用的高效纳米材料需要实现从光敏剂通过电荷分离和积累单元到氧化还原活性催化位点的快速且稳健的单向电子转移(ET)。我们探索了钌(II)三联吡啶衍生物光敏剂与作为纳米级生物导线的三血红素c型细胞色素PpcA之间光诱导电荷转移的超快时间尺度极限。在PpcA中设计了四个共价连接位点(K28C、K29C、K52C和G53C),实现了位点特异性共价标记,预期供体 - 受体(DA)距离为4 - 8 Å。X射线散射结果表明,突变和化学标记并未破坏蛋白质的结构。时间分辨光谱显示,对于具有相似DA距离且供体和受体之间共价键数量相同的系统,电荷转移速率存在三个数量级的差异。全原子分子动力学模拟为超快电荷转移的结构 - 功能要求以及光敏剂和血红素的芳香原子之间范德华接触的要求提供了更多见解,以便观察亚纳秒级的电子转移。这项工作展示了利用多血红素c型细胞色素作为框架来设计超快光驱动电子转移到电荷积累生物杂交模型系统的机会,并最终模拟将超快光驱动电子转移化学与小型、实验上通用的光合生物杂交组件内的多步催化有效耦合的光合作用范式。