State Key Lab of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, China.
Lab Chip. 2014 Apr 7;14(7):1367-76. doi: 10.1039/c3lc51247a.
The culturing of cancer cells on micropatterned substrates can provide insight into the factors of the extracellular environment that enable the control of cell growth. We report here a novel non-UV-based technique to quickly micropattern a poly-(ethylene) glycol diacrylate (PEGDA)-based hydrogel on top of modified glass substrates, which were then used to control the growth patterns of breast cancer cells. Previously, the fabrication of micropatterned substrates required relatively complicated steps, which made it impractical for researchers to rapidly and systematically investigate the effects of different cell growth patterns. The technique presented herein operates on the principle of optically-induced electrokinetics (OEKs) and uses computer-generated projection light patterns to dynamically pattern the hydrogel on a hydrogenated amorphous silicon (a-Si:H) thin-film, atop an indium tin oxide (ITO) glass substrate. This technique allows us to pattern lines, circles, pentagons, and more complex shapes in the hydrogel with line widths below 3 μm and thicknesses of up to 6 μm within 8 s by simply controlling the projected illumination pattern and applying an appropriate AC voltage between the two ITO glass substrates. After separating the glass substrates to expose the patterned hydrogel, we experimentally demonstrate that MCF-7 breast cancer cells will adhere to the bare a-Si:H surface, but not to the hydrogel patterned in various geometric shapes and sizes. Theoretical analysis and finite-element model simulations reveal that the dominant OEK forces in our technique are the dielectrophoresis (DEP) force and the electro-osmosis force, which enhance the photo-initiated cross-linking reaction in the hydrogel. Our preliminary cultures of breast cancer cells demonstrate that this reported technique could be applied to effectively confine the growth of cancer cells on a-Si:H surfaces and affect individual cell geometry during their growth.
在微图案化基底上培养癌细胞可以深入了解细胞外环境因素,这些因素可以控制细胞生长。我们在这里报告了一种新的非紫外光技术,可以快速在经过修饰的玻璃基底上图案化聚(乙二醇)二丙烯酸酯(PEGDA)基水凝胶,然后将其用于控制乳腺癌细胞的生长模式。以前,微图案化基底的制造需要相对复杂的步骤,这使得研究人员难以快速系统地研究不同细胞生长模式的影响。本文提出的技术基于光致动电动力学(OEK)原理,并使用计算机生成的投影光图案在氢化非晶硅(a-Si:H)薄膜上动态图案化水凝胶,该薄膜位于氧化铟锡(ITO)玻璃基底上。通过简单地控制投影照明图案并在两个 ITO 玻璃基底之间施加适当的交流电压,该技术允许我们在水凝胶中图案化线、圆、五边形和更复杂的形状,线宽小于 3 μm,厚度高达 6 μm,只需 8 s 即可完成。在分离玻璃基底以暴露图案化水凝胶之后,我们通过实验证明 MCF-7 乳腺癌细胞将附着在裸露的 a-Si:H 表面上,而不会附着在各种几何形状和尺寸的水凝胶图案上。理论分析和有限元模型模拟表明,我们技术中的主导 OEK 力是介电泳(DEP)力和电渗流力,它们增强了水凝胶中的光引发交联反应。我们对乳腺癌细胞的初步培养表明,该报道的技术可有效限制癌细胞在 a-Si:H 表面上的生长,并影响其生长过程中的单个细胞几何形状。