Suppr超能文献

使用动态掩膜投影光刻技术制备用于神经培养系统的微图案水凝胶。

Fabrication of micropatterned hydrogels for neural culture systems using dynamic mask projection photolithography.

作者信息

Curley J Lowry, Jennings Scott R, Moore Michael J

机构信息

Biomedical Engineering, Tulane University, USA.

出版信息

J Vis Exp. 2011 Feb 11(48):2636. doi: 10.3791/2636.

Abstract

Increasingly, patterned cell culture environments are becoming a relevant technique to study cellular characteristics, and many researchers believe in the need for 3D environments to represent in vitro experiments which better mimic in vivo qualities. Studies in fields such as cancer research, neural engineering, cardiac physiology, and cell-matrix interaction have shown cell behavior differs substantially between traditional monolayer cultures and 3D constructs. Hydrogels are used as 3D environments because of their variety, versatility and ability to tailor molecular composition through functionalization. Numerous techniques exist for creation of constructs as cell-supportive matrices, including electrospinning, elastomer stamps, inkjet printing, additive photopatterning, static photomask projection-lithography, and dynamic mask microstereolithography. Unfortunately, these methods involve multiple production steps and/or equipment not readily adaptable to conventional cell and tissue culture methods. The technique employed in this protocol adapts the latter two methods, using a digital micromirror device (DMD) to create dynamic photomasks for crosslinking geometrically specific poly-(ethylene glycol) (PEG) hydrogels, induced through UV initiated free radical polymerization. The resulting "2.5D" structures provide a constrained 3D environment for neural growth. We employ a dual-hydrogel approach, where PEG serves as a cell-restrictive region supplying structure to an otherwise shapeless but cell-permissive self-assembling gel made from either Puramatrix or agarose. The process is a quick simple one step fabrication which is highly reproducible and easily adapted for use with conventional cell culture methods and substrates. Whole tissue explants, such as embryonic dorsal root ganglia (DRG), can be incorporated into the dual hydrogel constructs for experimental assays such as neurite outgrowth. Additionally, dissociated cells can be encapsulated in the photocrosslinkable or self polymerizing hydrogel, or selectively adhered to the permeable support membrane using cell-restrictive photopatterning. Using the DMD, we created hydrogel constructs up to ~1mm thick, but thin film (<200 μm) PEG structures were limited by oxygen quenching of the free radical polymerization reaction. We subsequently developed a technique utilizing a layer of oil above the polymerization liquid which allowed thin PEG structure polymerization. In this protocol, we describe the expeditious creation of 3D hydrogel systems for production of microfabricated neural cell and tissue cultures. The dual hydrogel constructs demonstrated herein represent versatile in vitro models that may prove useful for studies in neuroscience involving cell survival, migration, and/or neurite growth and guidance. Moreover, as the protocol can work for many types of hydrogels and cells, the potential applications are both varied and vast.

摘要

越来越多的,图案化细胞培养环境正成为研究细胞特性的一种相关技术,并且许多研究人员认为需要3D环境来进行能更好模拟体内特性的体外实验。癌症研究、神经工程、心脏生理学和细胞 - 基质相互作用等领域的研究表明,传统单层培养和3D构建物之间的细胞行为存在显著差异。水凝胶因其种类多样、通用性强以及能够通过功能化定制分子组成而被用作3D环境。存在多种用于创建作为细胞支持基质的构建物的技术,包括静电纺丝、弹性体印章、喷墨打印、加法光图案化、静态光掩模投影光刻和动态掩模微立体光刻。不幸的是,这些方法涉及多个生产步骤和/或设备,不易适应传统的细胞和组织培养方法。本方案中采用的技术改编了后两种方法,使用数字微镜器件(DMD)创建动态光掩模,用于通过紫外线引发的自由基聚合诱导交联几何形状特定的聚(乙二醇)(PEG)水凝胶。由此产生的“2.5D”结构为神经生长提供了一个受限的3D环境。我们采用双水凝胶方法,其中PEG作为细胞限制区域,为原本无定形但细胞允许的由Puramatrix或琼脂糖制成的自组装凝胶提供结构。该过程是一个快速简单的一步制造过程,具有高度可重复性,并且易于适应传统细胞培养方法和底物。整个组织外植体,如胚胎背根神经节(DRG),可以纳入双水凝胶构建物中进行诸如神经突生长等实验测定。此外,解离的细胞可以封装在可光交联或自聚合的水凝胶中,或使用细胞限制光图案化选择性地粘附到可渗透的支撑膜上。使用DMD,我们创建了厚度达约1mm的水凝胶构建物,但薄膜(<200μm)PEG结构受到自由基聚合反应的氧猝灭限制。我们随后开发了一种在聚合液上方使用一层油的技术,该技术允许薄PEG结构聚合。在本方案中,我们描述了用于生产微加工神经细胞和组织培养物的3D水凝胶系统的快速创建方法。本文展示的双水凝胶构建物代表了通用的体外模型,可能对涉及细胞存活、迁移和/或神经突生长与导向的神经科学研究有用。此外,由于该方案可用于多种类型的水凝胶和细胞,其潜在应用既多样又广泛。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验