Ajikumar Arjun, Lei Kin Fong
Department of Biomedical Engineering, Chang Gung University, Taoyuan 33302, Taiwan.
Department of Radiation Oncology, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan.
Micromachines (Basel). 2024 Nov 28;15(12):1444. doi: 10.3390/mi15121444.
This review explores the significant role of microfluidic technologies in advancing cancer research, focusing on the below key areas: droplet-based microfluidics, organ-on-chip systems, paper-based microfluidics, electrokinetic chips, and microfluidic chips for the study of immune response. Droplet-based microfluidics allows precise manipulation of cells and three-dimensional microtissues, enabling high-throughput experiments that reveal insights into cancer cell migration, invasion, and drug resistance. Organ-on-chip systems replicate human organs to assess drug efficacy and toxicity, particularly in the liver, heart, kidney, gut, lung, and brain. Paper-based microfluidics offers an alternative approach to accomplish rapid diagnostics and cell- and tissue-based bioassays. Electrokinetic microfluidic chips offer precise control over cell positioning and behavior, facilitating drug screening and cellular studies. Immune response studies leverage real-time observation of interactions between immune and cancer cells, supporting the development of immunotherapies. These microfluidic advances are paving the way for personalized cancer treatments while addressing challenges of scalability, cost, and clinical integration.
本综述探讨了微流控技术在推进癌症研究方面的重要作用,重点关注以下关键领域:基于液滴的微流控、芯片器官系统、纸基微流控、电动芯片以及用于免疫反应研究的微流控芯片。基于液滴的微流控技术能够精确操控细胞和三维微组织,实现高通量实验,从而深入了解癌细胞的迁移、侵袭和耐药性。芯片器官系统可复制人体器官以评估药物疗效和毒性,特别是在肝脏、心脏、肾脏、肠道、肺和大脑方面。纸基微流控提供了一种替代方法,可用于快速诊断以及基于细胞和组织的生物测定。电动微流控芯片能够精确控制细胞的定位和行为,有助于药物筛选和细胞研究。免疫反应研究利用对免疫细胞与癌细胞之间相互作用的实时观察,支持免疫疗法的开发。这些微流控技术的进展正在为个性化癌症治疗铺平道路,同时应对可扩展性、成本和临床整合等挑战。