Ludwig Institute for Cancer Research, University of California School of Medicine, San Diego, La Jolla, California, USA.
Mol Cell Biol. 2014 Apr;34(8):1521-34. doi: 10.1128/MCB.00960-13. Epub 2014 Feb 18.
Errors during DNA replication are one likely cause of gross chromosomal rearrangements (GCRs). Here, we analyze the role of RNase H2, which functions to process Okazaki fragments, degrade transcription intermediates, and repair misincorporated ribonucleotides, in preventing genome instability. The results demonstrate that rnh203 mutations result in a weak mutator phenotype and cause growth defects and synergistic increases in GCR rates when combined with mutations affecting other DNA metabolism pathways, including homologous recombination (HR), sister chromatid HR, resolution of branched HR intermediates, postreplication repair, sumoylation in response to DNA damage, and chromatin assembly. In some cases, a mutation in RAD51 or TOP1 suppressed the increased GCR rates and/or the growth defects of rnh203Δ double mutants. This analysis suggests that cells with RNase H2 defects have increased levels of DNA damage and depend on other pathways of DNA metabolism to overcome the deleterious effects of this DNA damage.
DNA 复制过程中的错误是导致染色体大片段重排(GCR)的一个可能原因。在这里,我们分析了 RNase H2 的作用,RNase H2 可以处理冈崎片段、降解转录中间体和修复错配的核糖核苷酸,从而防止基因组不稳定。结果表明,rnh203 突变导致弱突变体表型,并与影响其他 DNA 代谢途径(包括同源重组(HR)、姐妹染色单体 HR、分支 HR 中间体的解决、复制后修复、DNA 损伤反应中的 SUMO 化和染色质组装)的突变结合时,会导致生长缺陷和 GCR 率的协同增加。在某些情况下,RAD51 或 TOP1 的突变抑制了 rnh203Δ 双突变体中 GCR 率的增加和/或生长缺陷。这项分析表明,具有 RNase H2 缺陷的细胞中 DNA 损伤水平增加,并且依赖于其他 DNA 代谢途径来克服这种 DNA 损伤的有害影响。