Suppr超能文献

酿酒酵母同源重组基因之间的上位性分析确定了 Sgs1、Mus81-Mms4 和 RNase H2 的多种修复途径。

Epistasis analysis between homologous recombination genes in Saccharomyces cerevisiae identifies multiple repair pathways for Sgs1, Mus81-Mms4 and RNase H2.

机构信息

Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA.

出版信息

Mutat Res. 2011 Sep 1;714(1-2):33-43. doi: 10.1016/j.mrfmmm.2011.06.007. Epub 2011 Jun 30.

Abstract

The DNA repair genes SGS1 and MUS81 of Saccharomyces cerevisiae are thought to control alternative pathways for the repair of toxic recombination intermediates based on the fact that sgs1Δ mus81Δ synthetic lethality is suppressed in the absence of homologous recombination (HR). Although these genes appear to functionally overlap in yeast and other model systems, the specific pathways controlled by SGS1 and MUS81 are poorly defined. Epistasis analyses based on DNA damage sensitivity previously indicated that SGS1 functioned primarily downstream of RAD51, and that MUS81 was independent of RAD51. To further define these genetic pathways, we carried out a systematic epistasis analysis between the RAD52-epistasis group genes and SGS1, MUS81, and RNH202, which encodes a subunit of RNase H2. Based on synthetic-fitness interactions and DNA damage sensitivities, we find that RAD52 is epistatic to MUS81 but not SGS1. In contrast, RAD54, RAD55 and RAD57 are epistatic to SGS1, MUS81 and RNH202. As expected, SHU2 is epistatic to SGS1, while both SHU1 and SHU2 are epistatic to MUS81. Importantly, loss of any RNase H2 subunit on its own resulted in increased recombination using a simple marker-excision assay. RNase H2 is thus needed to maintain genome stability consistent with the sgs1Δ rnh202Δ synthetic fitness defect. We conclude that SGS1 and MUS81 act in parallel pathways downstream of RAD51 and RAD52, respectively. The data further indicate these pathways share common components and display complex interactions.

摘要

酿酒酵母的 DNA 修复基因 SGS1 和 MUS81 被认为基于以下事实控制有毒重组中间体修复的替代途径:sgs1Δ mus81Δ 合成致死性在缺乏同源重组 (HR) 的情况下受到抑制。尽管这些基因在酵母和其他模型系统中似乎具有功能上的重叠,但 SGS1 和 MUS81 控制的具体途径尚未得到很好的定义。基于 DNA 损伤敏感性的上位性分析先前表明,SGS1 主要在 RAD51 下游起作用,而 MUS81 独立于 RAD51。为了进一步定义这些遗传途径,我们在 RAD52 上位性组基因与 SGS1、MUS81 和编码 RNase H2 亚基的 RNH202 之间进行了系统的上位性分析。基于合成适合度相互作用和 DNA 损伤敏感性,我们发现 RAD52 与 MUS81 上位性,但与 SGS1 无上位性。相比之下,RAD54、RAD55 和 RAD57 与 SGS1、MUS81 和 RNH202 上位性。正如预期的那样,SHU2 与 SGS1 上位性,而 SHU1 和 SHU2 都与 MUS81 上位性。重要的是,单独失去任何 RNase H2 亚基本身就会导致简单的标记切除测定中重组增加。RNase H2 因此需要维持基因组稳定性,这与 sgs1Δ rnh202Δ 合成适合度缺陷一致。我们得出结论,SGS1 和 MUS81 分别在 RAD51 和 RAD52 的平行途径中起作用。该数据进一步表明这些途径具有共同的成分并显示出复杂的相互作用。

相似文献

2
Roles of SGS1, MUS81, and RAD51 in the repair of lagging-strand replication defects in Saccharomyces cerevisiae.
Curr Genet. 2005 Oct;48(4):213-25. doi: 10.1007/s00294-005-0014-5. Epub 2005 Nov 4.
4
Cooperativity of Mus81.Mms4 with Rad54 in the resolution of recombination and replication intermediates.
J Biol Chem. 2009 Mar 20;284(12):7733-45. doi: 10.1074/jbc.M806192200. Epub 2009 Jan 7.
5
Functional overlap between Sgs1-Top3 and the Mms4-Mus81 endonuclease.
Genes Dev. 2001 Oct 15;15(20):2730-40. doi: 10.1101/gad.932201.
7
Srs2 and Mus81-Mms4 Prevent Accumulation of Toxic Inter-Homolog Recombination Intermediates.
PLoS Genet. 2016 Jul 7;12(7):e1006136. doi: 10.1371/journal.pgen.1006136. eCollection 2016 Jul.
8
Mutations in homologous recombination genes rescue top3 slow growth in Saccharomyces cerevisiae.
Genetics. 2002 Oct;162(2):647-62. doi: 10.1093/genetics/162.2.647.
10
Mph1 and Mus81-Mms4 prevent aberrant processing of mitotic recombination intermediates.
Mol Cell. 2013 Oct 10;52(1):63-74. doi: 10.1016/j.molcel.2013.09.007.

引用本文的文献

2
Maintenance of Yeast Genome Integrity by RecQ Family DNA Helicases.
Genes (Basel). 2020 Feb 18;11(2):205. doi: 10.3390/genes11020205.
3
Molecular and physiological consequences of faulty eukaryotic ribonucleotide excision repair.
EMBO J. 2020 Feb 3;39(3):e102309. doi: 10.15252/embj.2019102309. Epub 2019 Dec 12.
4
Genome-wide mutagenesis resulting from topoisomerase 1-processing of unrepaired ribonucleotides in DNA.
DNA Repair (Amst). 2019 Dec;84:102641. doi: 10.1016/j.dnarep.2019.102641. Epub 2019 Jul 3.
5
Genome instability consequences of RNase H2 Aicardi-Goutières syndrome alleles.
DNA Repair (Amst). 2019 Dec;84:102614. doi: 10.1016/j.dnarep.2019.04.002. Epub 2019 Apr 4.
6
The Top1 paradox: Friend and foe of the eukaryotic genome.
DNA Repair (Amst). 2017 Aug;56:33-41. doi: 10.1016/j.dnarep.2017.06.005. Epub 2017 Jun 9.
7
Genome instabilities arising from ribonucleotides in DNA.
DNA Repair (Amst). 2017 Aug;56:26-32. doi: 10.1016/j.dnarep.2017.06.004. Epub 2017 Jun 9.
8
Processing ribonucleotides incorporated during eukaryotic DNA replication.
Nat Rev Mol Cell Biol. 2016 Jun;17(6):350-63. doi: 10.1038/nrm.2016.37. Epub 2016 Apr 20.
9
Elevated Genome-Wide Instability in Yeast Mutants Lacking RNase H Activity.
Genetics. 2015 Nov;201(3):963-75. doi: 10.1534/genetics.115.182725. Epub 2015 Sep 22.
10
Stimulation of Chromosomal Rearrangements by Ribonucleotides.
Genetics. 2015 Nov;201(3):951-61. doi: 10.1534/genetics.115.181149. Epub 2015 Sep 22.

本文引用的文献

1
Rmi1 stimulates decatenation of double Holliday junctions during dissolution by Sgs1-Top3.
Nat Struct Mol Biol. 2010 Nov;17(11):1377-82. doi: 10.1038/nsmb.1919. Epub 2010 Oct 10.
2
DNA end resection by Dna2-Sgs1-RPA and its stimulation by Top3-Rmi1 and Mre11-Rad50-Xrs2.
Nature. 2010 Sep 2;467(7311):112-6. doi: 10.1038/nature09355.
3
Genome instability due to ribonucleotide incorporation into DNA.
Nat Chem Biol. 2010 Oct;6(10):774-81. doi: 10.1038/nchembio.424. Epub 2010 Aug 22.
4
Ribonuclease H: the enzymes in eukaryotes.
FEBS J. 2009 Mar;276(6):1494-505. doi: 10.1111/j.1742-4658.2009.06908.x. Epub 2008 Feb 18.
5
Mechanisms of Rad52-independent spontaneous and UV-induced mitotic recombination in Saccharomyces cerevisiae.
Genetics. 2008 May;179(1):199-211. doi: 10.1534/genetics.108.087189. Epub 2008 May 5.
6
Growth and manipulation of yeast.
Curr Protoc Mol Biol. 2008 Apr;Chapter 13:Unit 13.2. doi: 10.1002/0471142727.mb1302s82.
7
Mus81 is essential for sister chromatid recombination at broken replication forks.
EMBO J. 2008 May 7;27(9):1378-87. doi: 10.1038/emboj.2008.65. Epub 2008 Apr 3.
8
Saccharomyces cerevisiae Mus81-Mms4 is a catalytic, DNA structure-selective endonuclease.
Nucleic Acids Res. 2008 Apr;36(7):2182-95. doi: 10.1093/nar/gkm1152. Epub 2008 Feb 16.
9
Homologous recombination in DNA repair and DNA damage tolerance.
Cell Res. 2008 Jan;18(1):99-113. doi: 10.1038/cr.2008.1.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验