Suppr超能文献

玻璃态聚合物接触面积和分离间隙随压力的粗糙度相关缩放比例

Roughness-dependent scaling of the contact area and separation gap with pressure for glassy polymers.

作者信息

Patil Utkarsh, Kumar Shubhendu, Merriman Stephen, Dhinojwala Ali

机构信息

School of Polymer Science and Polymer Engineering, University of Akron, Akron, OH 44325.

出版信息

Proc Natl Acad Sci U S A. 2025 Jul;122(26):e2503087122. doi: 10.1073/pnas.2503087122. Epub 2025 Jun 24.

Abstract

The contact between two rough surfaces has been a topic of significant interest since early studies on Coulombic friction and remains crucial for numerous technological applications. However, theoretical progress has outpaced experiments due to the challenges in measuring contact areas across scales ranging from subnanometers to macroscopic dimensions. Here, we demonstrate the use of commonly available infrared-based (IR) spectroscopy in combination with finite-difference time-domain (FDTD) optical simulations to measure separation gaps and contact areas for glassy polymers ranging in roughness over two orders in magnitude. With the combined IR and FDTD simulations, we can overcome the optical diffraction limits and take advantage of the chemical specificity of IR spectroscopy to overcome limitations due to scattering. The scaling of the contact area ratio as a function of pressure illustrated the limitations of using pure elastic or plastic deformation in explaining the results. At both low and high pressures, the contact area ratios scale linearly with pressure as expected for purely elastic deformations at low pressures or plastic deformations at high pressures. However, if analyzed over a broad range of pressure, the power laws we observe are much larger than 1, exemplifying the need to consider elastoplastic models in explaining results for softer polymer contacts compared to other brittle, glassy materials. In comparison, the separation gaps scale exponentially with pressure, as expected. These results have important implications for the interpretation of properties such as friction, adhesion, and conductivity for softer, glassy contact interfaces.

摘要

自早期对库仑摩擦的研究以来,两个粗糙表面之间的接触一直是一个备受关注的重要课题,并且对于众多技术应用而言仍然至关重要。然而,由于在测量从亚纳米到宏观尺寸范围内的接触面积时存在挑战,理论进展已超过实验进展。在此,我们展示了使用常见的基于红外(IR)的光谱技术与时域有限差分(FDTD)光学模拟相结合,来测量粗糙度跨越两个数量级的玻璃态聚合物的分离间隙和接触面积。通过结合红外光谱和FDTD模拟,我们能够克服光学衍射极限,并利用红外光谱的化学特异性来克服由于散射导致的限制。接触面积比随压力的缩放关系说明了使用纯弹性或塑性变形来解释结果的局限性。在低压和高压下,接触面积比均与压力呈线性缩放关系,这在低压下的纯弹性变形或高压下的塑性变形中是预期的。然而,如果在广泛的压力范围内进行分析,我们观察到的幂律远大于1,这表明在解释与其他脆性玻璃材料相比更软的聚合物接触的结果时,需要考虑弹塑性模型。相比之下,分离间隙随压力呈指数缩放,正如预期的那样。这些结果对于解释更软的玻璃态接触界面的摩擦、粘附和电导率等性质具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8ce4/12232416/d099ed613394/pnas.2503087122fig01.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验