文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

缺氧诱导因子-1α和缺氧诱导因子-2α:高强度聚焦超声消融术后促进残余肝细胞癌血管生成的“兄弟”。

HIF-1α and HIF-2α: siblings in promoting angiogenesis of residual hepatocellular carcinoma after high-intensity focused ultrasound ablation.

作者信息

Wu Lun, Fu Zhihao, Zhou Shiji, Gong Jianping, Liu Chang An, Qiao Zhengrong, Li Shengwei

机构信息

The Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Hepatobiliary Surgery, Chongqing, China.

The Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.

出版信息

PLoS One. 2014 Feb 13;9(2):e88913. doi: 10.1371/journal.pone.0088913. eCollection 2014.


DOI:10.1371/journal.pone.0088913
PMID:24551189
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3923841/
Abstract

BACKGROUND: High-intensity focused ultrasound (HIFU) is a widely applied to treatment for unresectable hepatocellular carcinoma. However, insufficient HIFU can result in rapid progression of the residual tumor. The mechanism of such rapid growth of the residual tumor after HIFU ablation is poorly understood. OBJECTIVE: The aim of this study was to investigate the dynamic angiogenesis of residual tumor, and the temporal effect and mechanism of the HIF-1, 2α in the residual tumor angiogenesis. METHODS: Xenograft tumors of HepG2 cells were created by subcutaneously inoculating nude mice (athymic BALB/c nu/nu mice) with hepatoma cells. About thirty days after inoculation, all mice (except control group) were treated by HIFU and assigned randomly to 7 groups according to various time intervals (1st, 3rd, 5th day (d) and 1st, 2nd, 3rd, 4th week (w)). The residual tumor tissues were obtained from the experimental groups at various time points. Protein levels of HIF-1α, HIF-2α, VEGF-A, and EphA2 were quantified by immunohistochemistry analysis and Western Blot assays, and mRNA levels measured by Q-PCR. Microvascular density was calculated with counting of CD31 positive vascular endothelial cells by immunohistochemical staining. RESULTS: Compared with the control group, protein and mRNA levels of HIF-1α reached their highest levels on the 3rd day (P<0.01), then decreased (P<0.05). HIF-2α expression reached its highest level on the 2nd week compared with control group (P<0.01), then decreased (2 w-4 w) (P<0.05). The protein and mRNA levels of VEGF-A and EphA2 in the residual tumor tissues group that received HIFU were significantly decreased until 1 week compared with the control group (P<0.01). However, the levels increased compared to controls in 2-4 weeks (P<0.05). Similar results were obtained for MVD expression (P<0.05). CONCLUSION: Insufficient HIFU ablation promotes the angiogenesis in residual carcinoma tissue over time. The data indicate that the HIF-1, 2α/VEGFA/EphA2 pathway is involved.

摘要

背景:高强度聚焦超声(HIFU)广泛应用于不可切除肝细胞癌的治疗。然而,HIFU治疗不足可导致残留肿瘤快速进展。HIFU消融后残留肿瘤快速生长的机制尚不清楚。 目的:本研究旨在探讨残留肿瘤的动态血管生成,以及HIF-1、2α在残留肿瘤血管生成中的时间效应和机制。 方法:通过将肝癌细胞皮下接种于裸鼠(无胸腺BALB/c nu/nu小鼠)建立HepG2细胞异种移植瘤。接种约30天后,所有小鼠(对照组除外)接受HIFU治疗,并根据不同时间间隔(第1、3、5天(d)和第1、2、3、4周(w))随机分为7组。在不同时间点从实验组获取残留肿瘤组织。通过免疫组织化学分析和蛋白质印迹法对HIF-1α、HIF-2α、VEGF-A和EphA2的蛋白水平进行定量,通过Q-PCR测量mRNA水平。通过免疫组织化学染色计数CD31阳性血管内皮细胞计算微血管密度。 结果:与对照组相比,HIF-1α的蛋白和mRNA水平在第3天达到最高水平(P<0.01),然后下降(P<0.05)。与对照组相比,HIF-2α表达在第2周达到最高水平(P<0.01),然后下降(第2周-第4周)(P<0.05)。与对照组相比,接受HIFU的残留肿瘤组织组中VEGF-A和EphA2的蛋白和mRNA水平在1周前显著降低(P<0.01)。然而,在2-4周时与对照组相比水平升高(P<0.05)。微血管密度表达也得到类似结果(P<0.05)。 结论:HIFU消融不足随时间促进残留癌组织中的血管生成。数据表明HIF-1、2α/VEGFA/EphA2途径参与其中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/eb44a83447aa/pone.0088913.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/3e7eea6917b9/pone.0088913.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/2a03f28de8fa/pone.0088913.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/1e5491ade073/pone.0088913.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/9a02c24e235f/pone.0088913.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/c0cde1c1cc98/pone.0088913.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/e522c22357f5/pone.0088913.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/a580376665e8/pone.0088913.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/d9416c1a76b1/pone.0088913.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/0723430b5f07/pone.0088913.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/f3094721f77e/pone.0088913.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/eb44a83447aa/pone.0088913.g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/3e7eea6917b9/pone.0088913.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/2a03f28de8fa/pone.0088913.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/1e5491ade073/pone.0088913.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/9a02c24e235f/pone.0088913.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/c0cde1c1cc98/pone.0088913.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/e522c22357f5/pone.0088913.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/a580376665e8/pone.0088913.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/d9416c1a76b1/pone.0088913.g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/0723430b5f07/pone.0088913.g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/f3094721f77e/pone.0088913.g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6987/3923841/eb44a83447aa/pone.0088913.g011.jpg

相似文献

[1]
HIF-1α and HIF-2α: siblings in promoting angiogenesis of residual hepatocellular carcinoma after high-intensity focused ultrasound ablation.

PLoS One. 2014-2-13

[2]
Sorafenib blocks the activation of the HIF-2α/VEGFA/EphA2 pathway, and inhibits the rapid growth of residual liver cancer following high-intensity focused ultrasound therapy in vivo.

Pathol Res Pract. 2021-4

[3]
[Effects of hypoxia inducible factor-2α on promoting angiogenesis of residual hepatocellular carcinoma after high-intensity focused ultrasound ablation].

Zhonghua Gan Zang Bing Za Zhi. 2015-2

[4]
Overexpression and correlation of HIF-2α, VEGFA and EphA2 in residual hepatocellular carcinoma following high-intensity focused ultrasound treatment: Implications for tumor recurrence and progression.

Exp Ther Med. 2017-6

[5]
2-Methoxyestradiol synergizes with sorafenib to suppress hepatocellular carcinoma by simultaneously dysregulating hypoxia-inducible factor-1 and -2.

Cancer Lett. 2014-9-11

[6]
Sorafenib suppresses the rapid progress of hepatocellular carcinoma after insufficient radiofrequency ablation therapy: an experiment in vivo.

Acta Radiol. 2013-3-1

[7]
Hypoxia inducible factor 1α and hypoxia inducible factor 2α play distinct and functionally overlapping roles in oral squamous cell carcinoma.

Clin Cancer Res. 2010-8-31

[8]
Hypoxia-inducible factor-2α regulates GM-CSF-derived soluble vascular endothelial growth factor receptor 1 production from macrophages and inhibits tumor growth and angiogenesis.

J Immunol. 2011-7-15

[9]
Mild chronic hypoxia-induced HIF-2α interacts with c-MYC through competition with HIF-1α to induce hepatocellular carcinoma cell proliferation.

Cell Oncol (Dordr). 2021-10

[10]
Angiogenesis in residual cancer and roles of HIF-1α, VEGF, and MMP-9 in the development of residual cancer after radiofrequency ablation and surgical resection in rabbits with liver cancer.

Folia Morphol (Warsz). 2020

引用本文的文献

[1]
Retraction: HIF-1α and HIF-2α: Siblings in promoting angiogenesis of residual hepatocellular carcinoma after high-intensity focused ultrasound ablation.

PLoS One. 2025-4-8

[2]
Mechanisms and therapeutic strategies to combat the recurrence and progression of hepatocellular carcinoma after thermal ablation.

J Interv Med. 2023-10-18

[3]
How Biology Guides the Combination of Locoregional Interventional Therapies and Immunotherapy for Hepatocellular Carcinoma: Cytokines and Their Roles.

Cancers (Basel). 2023-2-19

[4]
Roles of hypoxia-inducible factor in hepatocellular carcinoma under local ablation therapies.

Front Pharmacol. 2023-2-6

[5]
Recent Perspectives on the Mechanism of Recurrence After Ablation of Hepatocellular Carcinoma: A Mini-Review.

Front Oncol. 2022-8-23

[6]
An Overview of Hepatocellular Carcinoma After Insufficient Radiofrequency Ablation.

J Hepatocell Carcinoma. 2022-4-26

[7]
Potential Therapies Targeting Metabolic Pathways in Cancer Stem Cells.

Cells. 2021-7-13

[8]
The role of hypoxia in the tumor microenvironment and development of cancer stem cell: a novel approach to developing treatment.

Cancer Cell Int. 2021-1-20

[9]
Glucose Metabolism and Oxidative Stress in Hepatocellular Carcinoma: Role and Possible Implications in Novel Therapeutic Strategies.

Cancers (Basel). 2020-6-23

[10]
Role and mechanism of programmed death-ligand 1 in hypoxia-induced liver cancer immune escape.

Oncol Lett. 2020-4

本文引用的文献

[1]
Survival analysis of high-intensity focused ultrasound therapy versus radiofrequency ablation in the treatment of recurrent hepatocellular carcinoma.

Ann Surg. 2013-4

[2]
Insufficient radiofrequency ablation promotes angiogenesis of residual hepatocellular carcinoma via HIF-1α/VEGFA.

PLoS One. 2012-5-15

[3]
Endothelial HIF-2α regulates murine pathological angiogenesis and revascularization processes.

J Clin Invest. 2012-3-19

[4]
EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma.

J Hepatol. 2012-4

[5]
HIF1α and HIF2α: sibling rivalry in hypoxic tumour growth and progression.

Nat Rev Cancer. 2011-12-15

[6]
Downregulating hypoxia-inducible factor-2α improves the efficacy of doxorubicin in the treatment of hepatocellular carcinoma.

Cancer Sci. 2012-1-13

[7]
Ubiquitin-specific protease 19 (USP19) regulates hypoxia-inducible factor 1α (HIF-1α) during hypoxia.

J Biol Chem. 2011-11-29

[8]
Suppression of vascular endothelial growth factor via siRNA interference modulates the biological behavior of human nasopharyngeal carcinoma cells.

Jpn J Radiol. 2011-9-29

[9]
Gene expression profiling of fixed tissues identified hypoxia-inducible factor-1α, VEGF, and matrix metalloproteinase-2 as biomarkers of lymph node metastasis in hepatocellular carcinoma.

Clin Cancer Res. 2011-6-28

[10]
Molecular mechanisms and clinical applications of angiogenesis.

Nature. 2011-5-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索