Suppr超能文献

Survival association rule mining towards type 2 diabetes risk assessment.

作者信息

Simon Gyorgy J, Schrom John, Castro M Regina, Li Peter W, Caraballo Pedro J

机构信息

University of Minnesota, Minneapolis, MN.

Mayo Clinic, Rochester, Minnesota.

出版信息

AMIA Annu Symp Proc. 2013 Nov 16;2013:1293-302. eCollection 2013.

Abstract

Type-2 Diabetes Mellitus is a growing epidemic that often leads to severe complications. Effective preventive measures exist and identifying patients at high risk of diabetes is a major health-care need. The use of association rule mining (ARM) is advantageous, as it was specifically developed to identify associations between risk factors in an interpretable form. Unfortunately, traditional ARM is not directly applicable to survival outcomes and it lacks the ability to compensate for confounders and to incorporate dosage effects. In this work, we propose Survival Association Rule (SAR) Mining, which addresses these shortcomings. We demonstrate on a real diabetes data set that SARs are naturally more interpretable than the traditional association rules, and predictive models built on top of these rules are very competitive relative to state of the art survival models and substantially outperform the most widely used diabetes index, the Framingham score.

摘要

相似文献

1
Survival association rule mining towards type 2 diabetes risk assessment.
AMIA Annu Symp Proc. 2013 Nov 16;2013:1293-302. eCollection 2013.
3
RANWAR: rank-based weighted association rule mining from gene expression and methylation data.
IEEE Trans Nanobioscience. 2015 Jan;14(1):59-66. doi: 10.1109/TNB.2014.2359494. Epub 2014 Sep 23.
4
Using association rule mining to identify risk factors for early childhood caries.
Comput Methods Programs Biomed. 2015 Nov;122(2):175-81. doi: 10.1016/j.cmpb.2015.07.008. Epub 2015 Jul 31.
6
Negative and positive association rules mining from text using frequent and infrequent itemsets.
ScientificWorldJournal. 2014;2014:973750. doi: 10.1155/2014/973750. Epub 2014 May 18.
8
Comorbidity study on type 2 diabetes mellitus using data mining.
Korean J Intern Med. 2012 Jun;27(2):197-202. doi: 10.3904/kjim.2012.27.2.197. Epub 2012 May 31.
9
A novel association rule mining approach using TID intermediate itemset.
PLoS One. 2018 Jan 19;13(1):e0179703. doi: 10.1371/journal.pone.0179703. eCollection 2018.
10
Improving risk-stratification of Diabetes complications using temporal data mining.
Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:2131-4. doi: 10.1109/EMBC.2015.7318810.

引用本文的文献

2
Predicting Progression Patterns of Type 2 Diabetes using Multi-sensor Measurements.
Smart Health (Amst). 2021 Jul;21. doi: 10.1016/j.smhl.2021.100206. Epub 2021 Jun 12.
5
Advancing Alzheimer's research: A review of big data promises.
Int J Med Inform. 2017 Oct;106:48-56. doi: 10.1016/j.ijmedinf.2017.07.002. Epub 2017 Jul 24.
6
Machine Learning and Data Mining Methods in Diabetes Research.
Comput Struct Biotechnol J. 2017 Jan 8;15:104-116. doi: 10.1016/j.csbj.2016.12.005. eCollection 2017.
8
An application of association rule mining to extract risk pattern for type 2 diabetes using tehran lipid and glucose study database.
Int J Endocrinol Metab. 2015 Apr 30;13(2):e25389. doi: 10.5812/ijem.25389. eCollection 2015 Apr.

本文引用的文献

1
Comorbidity study on type 2 diabetes mellitus using data mining.
Korean J Intern Med. 2012 Jun;27(2):197-202. doi: 10.3904/kjim.2012.27.2.197. Epub 2012 May 31.
3
Diagnostic analysis of patients with essential hypertension using association rule mining.
Healthc Inform Res. 2010 Jun;16(2):77-81. doi: 10.4258/hir.2010.16.2.77. Epub 2010 Jun 30.
4
Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study.
Arch Intern Med. 2007 May 28;167(10):1068-74. doi: 10.1001/archinte.167.10.1068.
5
Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.
N Engl J Med. 2002 Feb 7;346(6):393-403. doi: 10.1056/NEJMoa012512.
6
Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance.
N Engl J Med. 2001 May 3;344(18):1343-50. doi: 10.1056/NEJM200105033441801.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验