Suppr超能文献

利用多传感器测量预测2型糖尿病的进展模式。

Predicting Progression Patterns of Type 2 Diabetes using Multi-sensor Measurements.

作者信息

Ramazi Ramin, Perndorfer Christine, Soriano Emily C, Laurenceau Jean-Philippe, Beheshti Rahmatollah

机构信息

Department of Computer & Informational Sciences, University of Delaware, Newark, DE, USA.

Department of Psychological & Brain Sciences, University of Delaware, Newark, DE, USA.

出版信息

Smart Health (Amst). 2021 Jul;21. doi: 10.1016/j.smhl.2021.100206. Epub 2021 Jun 12.

Abstract

Type 2 diabetes - a prevalent chronic disease worldwide - increases risk for serious health consequences including heart and kidney disease. Forecasting diabetes progression can inform disease management strategies, thereby potentially reducing the likelihood or severity of its consequences. We use continuous glucose monitoring and actigraphy data from 54 individuals with Type 2 diabetes to predict their future hemoglobin A1c, HDL cholesterol, LDL cholesterol, and triglyceride levels one year later. We use a combination of convolutional and recurrent neural networks to develop a deep neural network architecture that can learn the dynamic patterns in different sensors' data and combine those patterns with additional demographic and lab data. To further demonstrate the generalizability of our models, we also evaluate their performance using an independent public dataset of individuals with Type 1 diabetes. In addition to diabetes, our approach could be useful for other serious and chronic physical illness, where dynamic (e.g., from multiple sensors) and static (e.g., demographic) data are used for creating predictive models.

摘要

2型糖尿病是一种在全球范围内普遍存在的慢性疾病,会增加包括心脏病和肾病在内的严重健康后果的风险。预测糖尿病进展可以为疾病管理策略提供信息,从而有可能降低其后果的可能性或严重程度。我们使用来自54名2型糖尿病患者的连续血糖监测和活动记录仪数据来预测他们一年后的未来糖化血红蛋白、高密度脂蛋白胆固醇、低密度脂蛋白胆固醇和甘油三酯水平。我们结合卷积神经网络和循环神经网络来开发一种深度神经网络架构,该架构可以学习不同传感器数据中的动态模式,并将这些模式与其他人口统计学和实验室数据相结合。为了进一步证明我们模型的通用性,我们还使用一个独立的1型糖尿病患者公共数据集评估了它们的性能。除了糖尿病,我们的方法对于其他严重的慢性身体疾病也可能有用,在这些疾病中,动态(例如来自多个传感器)和静态(例如人口统计学)数据被用于创建预测模型。

相似文献

引用本文的文献

2
Need for an Artificial Intelligence-based Diabetes Care Management System in India and the United States.印度和美国对基于人工智能的糖尿病护理管理系统的需求。
Health Serv Res Manag Epidemiol. 2024 Aug 28;11:23333928241275292. doi: 10.1177/23333928241275292. eCollection 2024 Jan-Dec.
5
Flexible-Window Predictions on Electronic Health Records.电子健康记录上的灵活窗口预测
Proc AAAI Conf Artif Intell. 2022 Feb-Mar;36(11):12510-12516. doi: 10.1609/aaai.v36i11.21520. Epub 2022 Jun 28.

本文引用的文献

4
Diabetes, heart failure, and renal dysfunction: The vicious circles.糖尿病、心力衰竭和肾功能障碍:恶性循环。
Prog Cardiovasc Dis. 2019 Jul-Aug;62(4):298-302. doi: 10.1016/j.pcad.2019.07.003. Epub 2019 Aug 1.
6
A deep learning approach to adherence detection for type 2 diabetics.一种用于检测2型糖尿病患者依从性的深度学习方法。
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:2896-2899. doi: 10.1109/EMBC.2017.8037462.
7
Machine Learning and Data Mining Methods in Diabetes Research.糖尿病研究中的机器学习与数据挖掘方法
Comput Struct Biotechnol J. 2017 Jan 8;15:104-116. doi: 10.1016/j.csbj.2016.12.005. eCollection 2017.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验