Suppr超能文献

用于识别具有临床意义的糖尿病前期亚群的分裂层次聚类法

Divisive Hierarchical Clustering towards Identifying Clinically Significant Pre-Diabetes Subpopulations.

作者信息

Kim Era, Oh Wonsuk, Pieczkiewicz David S, Castro M Regina, Caraballo Pedro J, Simon Gyorgy J

机构信息

Institute for Health Informatics, University of Minnesota, Minneapolis, MN.

Mayo Clinic, Rochester, MN.

出版信息

AMIA Annu Symp Proc. 2014 Nov 14;2014:1815-24. eCollection 2014.

Abstract

Type 2 Diabetes Mellitus is a progressive disease with increased risk of developing serious complications. Identifying subpopulations and their relevant risk factors can contribute to the prevention and effective management of diabetes. We use a novel divisive hierarchical clustering technique to identify clinically interesting subpopulations in a large cohort of Olmsted County, MN residents. Our results show that our clustering algorithm successfully identified clinically interesting clusters consisting of patients with higher or lower risk of diabetes than the general population. The proposed algorithm offers fine control over the granularity of the clustering, has the ability to seamlessly discover and incorporate interactions among the risk factors, and can handle non-proportional hazards, as well. It has the potential to significantly impact clinical practice by recognizing patients with specific risk factors who may benefit from an alternative management approach potentially leading to the prevention of diabetes and its complications.

摘要

2型糖尿病是一种渐进性疾病,发生严重并发症的风险会增加。识别亚群及其相关风险因素有助于糖尿病的预防和有效管理。我们使用一种新颖的分裂层次聚类技术,在明尼苏达州奥姆斯特德县的一大群居民中识别具有临床意义的亚群。我们的结果表明,我们的聚类算法成功识别出了临床上有意义的聚类,这些聚类中的患者患糖尿病的风险高于或低于一般人群。所提出的算法对聚类的粒度有很好的控制能力,能够无缝发现并纳入风险因素之间的相互作用,并且还能处理非比例风险。它有可能通过识别具有特定风险因素的患者来显著影响临床实践,这些患者可能从替代管理方法中受益,这可能会预防糖尿病及其并发症。

相似文献

4
Risk-factor clustering and cardiovascular disease risk in hypertensive patients.
Am J Hypertens. 2007 Jun;20(6):599-607. doi: 10.1016/j.amjhyper.2006.10.013.
6
Detection of undiagnosed diabetes and prediabetic states in high-risk emergency department patients.
Acad Emerg Med. 2009 May;16(5):394-402. doi: 10.1111/j.1553-2712.2009.00374.x. Epub 2009 Mar 16.
8
Diabetes prevention program in a Mediterranean environment: individual or group therapy? An effectiveness evaluation.
Prim Care Diabetes. 2015 Apr;9(2):89-95. doi: 10.1016/j.pcd.2014.07.005. Epub 2014 Aug 20.

引用本文的文献

2
Automatic Labeled Dialogue Generation for Nursing Record Systems.
J Pers Med. 2020 Jul 16;10(3):62. doi: 10.3390/jpm10030062.
3
Evaluating the Impact of Data Representation on EHR-Based Analytic Tasks.
Stud Health Technol Inform. 2019 Aug 21;264:288-292. doi: 10.3233/SHTI190229.
5
Estimating Disease Onset Time by Modeling Lab Result Trajectories via Bayes Networks.
Proc (IEEE Int Conf Healthc Inform). 2017 Aug;2017:374-379. doi: 10.1109/ICHI.2017.41. Epub 2017 Sep 14.
7
Type 2 Diabetes Mellitus Trajectories and Associated Risks.
Big Data. 2016 Mar 1;4(1):25-30. doi: 10.1089/big.2015.0029.

本文引用的文献

1
Survival association rule mining towards type 2 diabetes risk assessment.
AMIA Annu Symp Proc. 2013 Nov 16;2013:1293-302. eCollection 2013.
3
Executive summary: Standards of medical care in diabetes--2014.
Diabetes Care. 2014 Jan;37 Suppl 1:S5-13. doi: 10.2337/dc14-S005.
4
History of the Rochester Epidemiology Project: half a century of medical records linkage in a US population.
Mayo Clin Proc. 2012 Dec;87(12):1202-13. doi: 10.1016/j.mayocp.2012.08.012. Epub 2012 Nov 28.
6
Comorbidity study on type 2 diabetes mellitus using data mining.
Korean J Intern Med. 2012 Jun;27(2):197-202. doi: 10.3904/kjim.2012.27.2.197. Epub 2012 May 31.
8
Prediction of incident diabetes mellitus in middle-aged adults: the Framingham Offspring Study.
Arch Intern Med. 2007 May 28;167(10):1068-74. doi: 10.1001/archinte.167.10.1068.
9
Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin.
N Engl J Med. 2002 Feb 7;346(6):393-403. doi: 10.1056/NEJMoa012512.
10
Exponential survival trees.
Stat Med. 1989 Aug;8(8):947-61. doi: 10.1002/sim.4780080806.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验