Suppr超能文献

Using multidimensional mutual information to prioritize mammographic features for breast cancer diagnosis.

作者信息

Wu Y, Vanness D J, Burnside E S

机构信息

University of Wisconsin, Madison, WI.

出版信息

AMIA Annu Symp Proc. 2013 Nov 16;2013:1534-43. eCollection 2013.

Abstract

The goal of this study was to demonstrate that information theory could be used to prioritize mammographic features to efficiently stratify the risk of breast cancer. We compared two approaches, Single-dimensional Mutual Information (SMI), which ranks features based on mutual information of features with outcomes without considering dependency of other features, and Multidimensional Mutual Information (MMI), which ranks features by considering dependency. To evaluate these approaches, we calculated area under the ROC curve for Bayesian networks trained and tested on features ranked by each approach. We found that both approaches were able to stratify mammograms by risk, but MMI required fewer features (ten vs. thirteen). MMI-based rankings may have greater clinical utility; a smaller set of features allows radiologists to focus on those findings with the highest yield and in the future may help improve mammography workflow.

摘要

相似文献

4
A comprehensive methodology for determining the most informative mammographic features.
J Digit Imaging. 2013 Oct;26(5):941-7. doi: 10.1007/s10278-013-9588-5.
7
On the interplay of machine learning and background knowledge in image interpretation by Bayesian networks.
Artif Intell Med. 2013 Jan;57(1):73-86. doi: 10.1016/j.artmed.2012.12.004. Epub 2013 Feb 7.
8
Genetic variants improve breast cancer risk prediction on mammograms.
AMIA Annu Symp Proc. 2013 Nov 16;2013:876-85. eCollection 2013.
9
Applying a new bilateral mammographic density segmentation method to improve accuracy of breast cancer risk prediction.
Int J Comput Assist Radiol Surg. 2017 Oct;12(10):1819-1828. doi: 10.1007/s11548-017-1648-8. Epub 2017 Jul 19.
10
Radiologists' detection of mammographic abnormalities with and without a computer-aided detection system.
Australas Radiol. 2003 Sep;47(3):257-60. doi: 10.1046/j.1440-1673.2003.01173.x.

引用本文的文献

1
Discriminatory power of common genetic variants in personalized breast cancer diagnosis.
Proc SPIE Int Soc Opt Eng. 2016 Feb 27;9787. doi: 10.1117/12.2217030. Epub 2016 Mar 24.

本文引用的文献

1
A comprehensive methodology for determining the most informative mammographic features.
J Digit Imaging. 2013 Oct;26(5):941-7. doi: 10.1007/s10278-013-9588-5.
2
Positive predictive value of BI-RADS MR imaging.
Radiology. 2012 Jul;264(1):51-8. doi: 10.1148/radiol.12110619. Epub 2012 May 15.
3
Diagnosing breast masses in digital mammography using feature selection and ensemble methods.
J Med Syst. 2012 Apr;36(2):569-77. doi: 10.1007/s10916-010-9518-8. Epub 2010 May 14.
4
Breast tissue composition and susceptibility to breast cancer.
J Natl Cancer Inst. 2010 Aug 18;102(16):1224-37. doi: 10.1093/jnci/djq239. Epub 2010 Jul 8.
5
On the feature selection criterion based on an approximation of multidimensional mutual information.
IEEE Trans Pattern Anal Mach Intell. 2010 Jul;32(7):1342-3. doi: 10.1109/TPAMI.2010.62.
6
Family history, mammographic density, and risk of breast cancer.
Cancer Epidemiol Biomarkers Prev. 2010 Feb;19(2):456-63. doi: 10.1158/1055-9965.EPI-09-0881.
7
The ACR BI-RADS experience: learning from history.
J Am Coll Radiol. 2009 Dec;6(12):851-60. doi: 10.1016/j.jacr.2009.07.023.
8
Using mutual information for selecting features in supervised neural net learning.
IEEE Trans Neural Netw. 1994;5(4):537-50. doi: 10.1109/72.298224.
9
Input feature selection for classification problems.
IEEE Trans Neural Netw. 2002;13(1):143-59. doi: 10.1109/72.977291.
10
Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors.
Radiology. 2007 Aug;244(2):390-8. doi: 10.1148/radiol.2442060712. Epub 2007 Jun 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验