Marlin Benjamin M, Adams Roy J, Sadasivam Rajani, Houston Thomas K
School of Computer Science, University of Massachusetts Amherst.
Quantitative Health Sciences, University of Massachusetts Medical School.
AMIA Annu Symp Proc. 2013 Nov 16;2013:1600-7. eCollection 2013.
The goal of computer tailored health communications (CTHC) is to promote healthy behaviors by sending messages tailored to individual patients. Current CTHC systems collect baseline patient "profiles" and then use expert-written, rule-based systems to target messages to subsets of patients. Our main interest in this work is the study of collaborative filtering-based CTHC systems that can learn to tailor future message selections to individual patients based explicit feedback about past message selections. This paper reports the results of a study designed to collect explicit feedback (ratings) regarding four aspects of messages from 100 subjects in the smoking cessation support domain. Our results show that most users have positive opinions of most messages and that the ratings for all four aspects of the messages are highly correlated with each other. Finally, we conduct a range of rating prediction experiments comparing several different model variations. Our results show that predicting future ratings based on each user's past ratings contributes the most to predictive accuracy.
计算机定制健康通信(CTHC)的目标是通过发送针对个体患者的信息来促进健康行为。当前的CTHC系统收集患者的基线“档案”,然后使用专家编写的基于规则的系统将信息定向到患者子集。我们在这项工作中的主要兴趣是研究基于协同过滤的CTHC系统,该系统可以根据对过去信息选择的明确反馈,学会为个体患者定制未来的信息选择。本文报告了一项研究的结果,该研究旨在收集来自戒烟支持领域100名受试者对信息四个方面的明确反馈(评分)。我们的结果表明,大多数用户对大多数信息持积极态度,并且信息所有四个方面的评分彼此高度相关。最后,我们进行了一系列评分预测实验,比较了几种不同的模型变体。我们的结果表明,根据每个用户过去的评分预测未来的评分对预测准确性贡献最大。