Medical Research Council Anatomical Neuropharmacology Unit, Department of Pharmacology, University of Oxford, Oxford OX1 3TH, United Kingdom; and Institut de Neurosciences de la Timone, Centre National de la Recherche Scientifique-Aix-Marseille Université, 13005 Marseille, France.
J Neurosci. 2014 Feb 19;34(8):3101-17. doi: 10.1523/JNEUROSCI.4627-13.2014.
Cholinergic interneurons are key components of striatal microcircuits. In primates, tonically active neurons (putative cholinergic interneurons) exhibit multiphasic responses to motivationally salient stimuli that mirror those of midbrain dopamine neurons and together these two systems mediate reward-related learning in basal ganglia circuits. Here, we addressed the potential contribution of cortical and thalamic excitatory inputs to the characteristic multiphasic responses of cholinergic interneurons in vivo. We first recorded and labeled individual cholinergic interneurons in anesthetized rats. Electron microscopic analyses of these labeled neurons demonstrated that an individual interneuron could form synapses with cortical and, more commonly, thalamic afferents. Single-pulse electrical stimulation of ipsilateral frontal cortex led to robust short-latency (<20 ms) interneuron spiking, indicating monosynaptic connectivity, but firing probability progressively decreased during high-frequency pulse trains. In contrast, single-pulse thalamic stimulation led to weak short-latency spiking, but firing probability increased during pulse trains. After initial excitation from cortex or thalamus, interneurons displayed a "pause" in firing, followed by a "rebound" increase in firing rate. Across all stimulation protocols, the number of spikes in the initial excitation correlated positively with pause duration and negatively with rebound magnitude. The magnitude of the initial excitation, therefore, partly determined the profile of later components of multiphasic responses. Upon examining the responses of tonically active neurons in behaving primates, we found that these correlations held true for unit responses to a reward-predicting stimulus, but not to the reward alone, delivered outside of any task. We conclude that excitatory inputs determine, at least in part, the multiphasic responses of cholinergic interneurons under specific behavioral conditions.
胆碱能中间神经元是纹状体微电路的关键组成部分。在灵长类动物中,持续活动的神经元(假定的胆碱能中间神经元)对动机显著刺激表现出多相反应,与中脑多巴胺神经元的反应相似,这两个系统共同介导基底神经节回路中的奖励相关学习。在这里,我们研究了皮质和丘脑兴奋性输入对体内胆碱能中间神经元特征性多相反应的潜在贡献。我们首先在麻醉大鼠中记录和标记单个胆碱能中间神经元。对这些标记神经元的电镜分析表明,单个中间神经元可以与皮质和更常见的丘脑传入形成突触。同侧额皮质的单脉冲电刺激导致强烈的短潜伏期 (<20 ms) 中间神经元放电,表明存在单突触连接,但在高频脉冲串期间,放电概率逐渐降低。相比之下,单脉冲丘脑刺激导致弱的短潜伏期放电,但在脉冲串期间,放电概率增加。在皮质或丘脑初始兴奋后,中间神经元的放电会出现“暂停”,随后会出现“反弹”增加。在所有刺激方案中,初始兴奋中的尖峰数与暂停持续时间呈正相关,与反弹幅度呈负相关。因此,初始兴奋的幅度部分决定了多相反应后期成分的特征。在检查行为灵长类动物中持续活动神经元的反应时,我们发现这些相关性适用于对奖励预测刺激的单位反应,但不适用于单独的奖励,这些奖励是在没有任何任务的情况下给予的。我们得出结论,兴奋性输入至少部分决定了特定行为条件下胆碱能中间神经元的多相反应。