Graham Richard S
School of Mathematical Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
Chem Commun (Camb). 2014 Apr 7;50(27):3531-45. doi: 10.1039/c3cc49668f. Epub 2014 Feb 20.
Flow profoundly influences the crystallisation kinetics and morphology of polymeric materials. By distorting the configuration of polymer chains, flow breaks down the kinetic barriers to crystallisation and directs the resulting crystallisation. This flow-induced crystallisation (FIC) in polymers is a fascinating, externally driven, non-equilibrium phase transition, which is controlled by kinetics. Furthermore, the effect is of central importance to the polymer industry as crystallisation determines virtually all of the useful properties of semi-crystalline polymer products. However, simulating flow-induced crystallisation in polymers is notoriously difficult due to the very wide spread of length and timescales, especially as the most pronounced flow-induced effects occur for long chains at low undercooling. In this article I will discuss multiscale modelling techniques for polymer FIC. In particular, I will review recent attempts to connect modelling approaches across different levels of coarse-graining. This has the ultimate aim of passing insight from the most detailed simulation techniques to more tractable approaches intended to model polymer processing. I will discuss the exciting prospects for future work in this area.
流动对聚合材料的结晶动力学和形态有着深远影响。通过扭曲聚合物链的构型,流动打破了结晶的动力学障碍并引导结晶过程。聚合物中的这种流动诱导结晶(FIC)是一种引人入胜的、由外部驱动的非平衡相变,它受动力学控制。此外,由于结晶几乎决定了半结晶聚合物产品的所有有用性能,因此这种效应在聚合物工业中至关重要。然而,由于长度和时间尺度的范围非常广泛,模拟聚合物中的流动诱导结晶非常困难,特别是因为最显著的流动诱导效应发生在长链和低过冷度条件下。在本文中,我将讨论聚合物FIC的多尺度建模技术。特别是,我将回顾最近在不同粗粒度水平上连接建模方法的尝试。这样做的最终目的是将最详细的模拟技术所获得的见解传递到更易于处理的方法中,这些方法旨在对聚合物加工进行建模。我将讨论该领域未来工作的令人兴奋的前景。