Suppr超能文献

PANDA-T1ρ:整合主成分分析和字典学习以实现快速T1ρ映射

PANDA-T1ρ: Integrating principal component analysis and dictionary learning for fast T1ρ mapping.

作者信息

Zhu Yanjie, Zhang Qinwei, Liu Qiegen, Wang Yi-Xiang J, Liu Xin, Zheng Hairong, Liang Dong, Yuan Jing

机构信息

Paul C. Lauterbur Research Centre for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Shenzhen, Guangdong, China.

Shenzhen Key Laboratory for MRI, Shenzhen, Guangdong, China.

出版信息

Magn Reson Med. 2015 Jan;73(1):263-72. doi: 10.1002/mrm.25130. Epub 2014 Feb 14.

Abstract

PURPOSE

Long scanning time greatly hinders the widespread application of spin-lattice relaxation in rotating frame (T1ρ) in clinics. In this study, a novel method is proposed to reconstruct the T1ρ-weighted images from undersampled k-space data and hence accelerate the acquisition of T1ρ imaging.

METHODS

The proposed approach (PANDA-T1ρ) combined the benefit of PCA and dictionary learning when reconstructing image from undersampled data. Specifically, the PCA transform was first used to sparsify the image series along the parameter direction and then the sparsified images were reconstructed by means of dictionary learning and finally solved the images. A variation of PANDA-T1ρ was also developed for the heavy noise case. Numerical simulation and in vivo experiments were carried out with the accelerating factor from 2 to 4 to verify the performance of PANDA-T1ρ.

RESULTS

The reconstructed T1ρ maps using the PANDA-T1ρ method were found to be comparable to the reference at all verified acceleration factors. Moreover, the variation exhibited better performance than the original version when the k-space data were contaminated by heavy noise.

CONCLUSION

PANDA-T1ρ can significantly reduce the scanning time of T1ρ by integrating PCA and dictionary learning and provides better parameter estimation than the state-of-art methods for a fixed acceleration factor.

摘要

目的

较长的扫描时间极大地阻碍了旋转框架下自旋晶格弛豫时间(T1ρ)成像在临床上的广泛应用。在本研究中,我们提出了一种新方法,可从欠采样的k空间数据重建T1ρ加权图像,从而加速T1ρ成像的采集。

方法

所提出的方法(PANDA-T1ρ)在从欠采样数据重建图像时结合了主成分分析(PCA)和字典学习的优点。具体而言,首先使用PCA变换沿参数方向对图像序列进行稀疏化处理,然后通过字典学习对稀疏化后的图像进行重建,最终求解出图像。还针对重噪声情况开发了PANDA-T1ρ的一种变体。进行了数值模拟和体内实验,加速因子从2到4,以验证PANDA-T1ρ的性能。

结果

发现在所有验证的加速因子下,使用PANDA-T1ρ方法重建的T1ρ图与参考图相当。此外,当k空间数据受到重噪声污染时,该变体的性能优于原始版本。

结论

PANDA-T1ρ通过整合PCA和字典学习可显著减少T1ρ的扫描时间,并且在固定加速因子下比现有方法提供更好的参数估计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验