Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Universitat de València, València, Spain.
J Virol. 2014 May;88(9):5042-9. doi: 10.1128/JVI.02147-13. Epub 2014 Feb 19.
Rates of spontaneous mutation determine viral fitness and adaptability. In RNA viruses, treatment with mutagenic nucleoside analogues selects for polymerase variants with increased fidelity, showing that viral mutation rates can be adjusted in response to imposed selective pressures. However, this type of resistance is not possible in viruses that do not encode their own polymerases, such as single-stranded DNA viruses. We previously showed that serial passaging of bacteriophage ϕX174 in the presence of the nucleoside analogue 5-fluorouracil (5-FU) favored substitutions in the lysis protein E (P. Domingo-Calap, M. Pereira-Gomez, and R. Sanjuán, J. Virol. 86:: 9640-9646, 2012, doi:10.1128/JVI.00613-12). Here, we found that approximately half (6/12) of the amino acid replacements in the N-terminal region of this protein led to delayed lysis, and two of these changes (V2A and D8A) also conferred partial resistance to 5-FU. By delaying lysis, the V2A and D8A substitutions allowed the virus to increase the burst size per cell in the presence of 5-FU. Furthermore, these substitutions tended to alleviate drug-induced mutagenesis by reducing the number of rounds of copying required for population growth, revealing a new mechanism of resistance. This form of mutation rate regulation may also be utilized by other viruses whose replication mode is similar to that of bacteriophage ϕX174.
Many viruses display high rates of spontaneous mutations due to defects in proofreading or postreplicative repair, allowing them to rapidly adapt to changing environments. Viral mutation rates may have been optimized to achieve high adaptability without incurring an excessive genetic load. Supporting this, RNA viruses subjected to chemical mutagenesis treatments have been shown to evolve higher-fidelity polymerases. However, many viruses cannot modulate replication fidelity because they do not encode their own polymerase. Here, we show a new mechanism for regulating viral mutation rates. We found that, under mutagenic conditions, the single-stranded bacteriophage ϕX174 evolved delayed lysis, and that this allowed the virus to increase the amount of progeny produced per cell. As a result, the viral population was amplified in fewer infection cycles, reducing the chances for mutation appearance.
自发突变率决定病毒的适应性和适应性。在 RNA 病毒中,用诱变核苷类似物处理可选择具有更高保真度的聚合酶变体,表明病毒突变率可根据施加的选择压力进行调整。然而,对于不编码自身聚合酶的病毒,如单链 DNA 病毒,就不可能发生这种类型的耐药性。我们之前曾表明,在核苷类似物 5-氟尿嘧啶 (5-FU) 的存在下,噬菌体 φX174 的连续传代有利于裂解蛋白 E 中的取代(P. Domingo-Calap、M. Pereira-Gomez 和 R. Sanjuán,J. Virol. 86::9640-9646,2012 年,doi:10.1128/JVI.00613-12)。在这里,我们发现该蛋白 N 端区域的大约一半(6/12)氨基酸取代导致裂解延迟,其中两个改变(V2A 和 D8A)也对 5-FU 具有部分抗性。通过延迟裂解,V2A 和 D8A 取代允许病毒在 5-FU 存在下增加每个细胞的爆发大小。此外,这些取代倾向于通过减少群体生长所需的复制轮数来减轻药物诱导的诱变,从而揭示了一种新的耐药机制。这种形式的突变率调节也可能被其他复制模式与噬菌体 φX174 相似的病毒利用。
由于校对或复制后修复缺陷,许多病毒会显示出很高的自发突变率,使它们能够快速适应不断变化的环境。病毒突变率可能已经过优化,以在不增加过多遗传负荷的情况下实现高适应性。支持这一点,已经表明,用化学诱变剂处理的 RNA 病毒已经进化出更高保真度的聚合酶。然而,许多病毒不能调节复制保真度,因为它们不编码自己的聚合酶。在这里,我们展示了一种调节病毒突变率的新机制。我们发现,在诱变条件下,单链噬菌体 φX174 进化出延迟裂解,这使得病毒能够增加每个细胞产生的后代数量。结果,病毒群体在更少的感染周期中被放大,减少了突变出现的机会。