Suppr超能文献

宏观有序的石墨烯:液晶和湿法纺丝纤维。

Graphene in macroscopic order: liquid crystals and wet-spun fibers.

机构信息

MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University , 38 Zheda Road, Hangzhou 310027, P. R. China.

出版信息

Acc Chem Res. 2014 Apr 15;47(4):1267-76. doi: 10.1021/ar4002813. Epub 2014 Feb 20.

Abstract

In nanotechnology, the creation of new nanoparticles consistently feeds back into efforts to design and fabricate new macroscopic materials with specific properties. As a two-dimensional (2D) building block of new materials, graphene has received widespread attention due to its exceptional mechanical, electrical, and thermal properties. But harnessing these attributes into new materials requires developing methods to assemble single-atom-thick carbon flakes into macroscopically ordered structures. Because the melt processing of carbon materials is impossible, fluid assembly is the only viable approach for meeting this challenge. But in the meantime, researchers need to solve two fundamental problems: creating orientational ordering in fluids and the subsequent phase-transformation from ordered fluids into ordered solid materials. To address these problems, this Account highlights our graphene chemistry methods that take advantage of liquid crystals to produce graphene fibers. We have successfully synthesized graphene oxide (GO) from graphite in a scalable manner. Using the size of graphite particles and post fractionation, we successfully tuned the lateral size of GO from submicron sizes to dozens of microns. Based on the rich chemistry of GO, we developed reliable methods for chemical or physical functionalization of graphene and produced a series of functionalized, highly soluble graphene derivatives that behave as single layers even at high concentrations. In the dispersive system of GO and functionalized graphenes, rich liquid crystals (LCs) formed spontaneously. Some of these liquid crystals had a conventional nematic phase with orientational order; others had a lamellar phase. Importantly, we observed a new chiral mesophase featuring a helical-lamellar structural model with frustrated disinclinations. The graphene-based LCs show ordered assembly behaviors in the fluid state of 2D colloids and lay a foundation for the design of ordered materials with optimal performances. Using the wet-spinning assembly approach, we transformed prealigned liquid crystalline dopes into graphene fibers (GFs) with highly ordered structures. We extended the wet-spinning assembly strategy to polymer-grafted or mixed graphene LCs to obtain hierarchically assembled, continuous nacre-mimetic fibers and hybridized graphene fibers. Both the neat GFs and the composite fibers are strong, flexible, electrically conductive, and chemically resistive. Multifunctional fibers that are both flexible and modular could be a key for applying atomically thin graphene in real-world materials and devices such as supercapacitors and solar cells. Therefore, we have opened a brand-new avenue for transforming mineral graphite into high performance, multifunctional GFs and offered an alternative strategy for the fabrication of carbon fibers. We hope that this Account and further efforts in the field will guide researchers toward the macroscopic assembly of graphene and its real-world applications.

摘要

在纳米技术中,新纳米粒子的创造不断反馈到设计和制造具有特定性质的新型宏观材料的努力中。作为新材料的二维(2D)构建块,石墨烯因其出色的机械、电气和热性能而受到广泛关注。但是,要将这些属性应用于新材料,需要开发将单原子厚的碳薄片组装成宏观有序结构的方法。由于碳材料的熔融加工是不可能的,因此流体组装是满足这一挑战的唯一可行方法。但与此同时,研究人员需要解决两个基本问题:在流体中产生取向有序和随后从有序流体到有序固体材料的相转变。为了解决这些问题,本账户重点介绍了我们利用液晶制备石墨烯纤维的石墨烯化学方法。我们已经成功地以可扩展的方式从石墨合成氧化石墨烯(GO)。通过控制石墨颗粒的尺寸和后分级,我们成功地将 GO 的横向尺寸从亚微米尺寸调至数十微米。基于 GO 的丰富化学性质,我们开发了可靠的化学或物理功能化石墨烯的方法,并制备了一系列功能化的、高可溶性的石墨烯衍生物,即使在高浓度下也表现为单层。在 GO 和功能化石墨烯的分散体系中,自发形成了丰富的液晶(LC)。其中一些液晶具有具有取向有序的传统向列相;其他的则具有层状相。重要的是,我们观察到一种具有螺旋层状结构模型的新手性介晶相,其中具有受阻的偏心率。基于石墨烯的液晶在 2D 胶体的流体状态下表现出有序组装行为,为具有最佳性能的有序材料的设计奠定了基础。我们使用湿法纺丝组装方法将预定向的液晶掺杂剂转化为具有高度有序结构的石墨烯纤维(GFs)。我们将湿法纺丝组装策略扩展到接枝聚合物或混合石墨烯液晶,以获得分级组装的、连续的珍珠母仿生纤维和杂交石墨烯纤维。纯 GFs 和复合纤维都具有高强度、柔韧性、导电性和耐化学性。灵活且模块化的多功能纤维可能是将原子级薄的石墨烯应用于超级电容器和太阳能电池等实际材料和设备的关键。因此,我们为将矿物石墨转化为高性能多功能 GFs 开辟了一条全新的途径,并为碳纤维的制造提供了一种替代策略。我们希望本账户和该领域的进一步努力将指导研究人员实现石墨烯的宏观组装及其在实际中的应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验