Zhou Yuxiao, Zhang Yali, Pang Yuheng, Guo Hua, Guo Yongqiang, Li Mukun, Shi Xuetao, Gu Junwei
Shaanxi Key Laboratory of Macromolecular Science and Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
Nanomicro Lett. 2025 Apr 27;17(1):235. doi: 10.1007/s40820-025-01752-x.
High-performance TiCT fibers have garnered significant potential for smart fibers enabled fabrics. Nonetheless, a major challenge hindering their widespread use is the lack of strong interlayer interactions between TiCT nanosheets within fibers, which restricts their properties. Herein, a versatile strategy is proposed to construct wet-spun TiCT fibers, in which trace amounts of borate form strong interlayer crosslinking between TiCT nanosheets to significantly enhance interactions as supported by density functional theory calculations, thereby reducing interlayer spacing, diminishing microscopic voids and promoting orientation of the nanosheets. The resultant TiCT fibers exhibit exceptional electrical conductivity of 7781 S cm and mechanical properties, including tensile strength of 188.72 MPa and Young's modulus of 52.42 GPa. Notably, employing equilibrium molecular dynamics simulations, finite element analysis, and cross-wire geometry method, it is revealed that such crosslinking also effectively lowers interfacial thermal resistance and ultimately elevates thermal conductivity of TiCT fibers to 13 W m K, marking the first systematic study on thermal conductivity of TiCT fibers. The simple and efficient interlayer crosslinking enhancement strategy not only enables the construction of thermal conductivity TiCT fibers with high electrical conductivity for smart textiles, but also offers a scalable approach for assembling other nanomaterials into multifunctional fibers.
高性能TiCT纤维在智能纤维织物方面具有巨大潜力。然而,阻碍其广泛应用的一个主要挑战是纤维内TiCT纳米片之间缺乏强层间相互作用,这限制了它们的性能。在此,提出了一种通用策略来构建湿法纺丝TiCT纤维,其中痕量硼酸盐在TiCT纳米片之间形成强层间交联,正如密度泛函理论计算所支持的那样,显著增强相互作用,从而减小层间距,减少微观孔隙并促进纳米片的取向。所得的TiCT纤维表现出7781 S cm的优异电导率和机械性能,包括188.72 MPa的拉伸强度和52.42 GPa的杨氏模量。值得注意的是,通过平衡分子动力学模拟、有限元分析和交叉线几何方法表明,这种交联还能有效降低界面热阻,并最终将TiCT纤维的热导率提高到13 W m K,这是对TiCT纤维热导率的首次系统研究。这种简单有效的层间交联增强策略不仅能够构建用于智能纺织品的具有高电导率的导热TiCT纤维,还为将其他纳米材料组装成多功能纤维提供了一种可扩展的方法。