Suppr超能文献

高分辨率全基因组结合事件发现和基序发现揭示了转录因子的空间结合约束。

High resolution genome wide binding event finding and motif discovery reveals transcription factor spatial binding constraints.

机构信息

Computational and Systems Biology Program, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America.

出版信息

PLoS Comput Biol. 2012;8(8):e1002638. doi: 10.1371/journal.pcbi.1002638. Epub 2012 Aug 9.

Abstract

An essential component of genome function is the syntax of genomic regulatory elements that determine how diverse transcription factors interact to orchestrate a program of regulatory control. A precise characterization of in vivo spacing constraints between key transcription factors would reveal key aspects of this genomic regulatory language. To discover novel transcription factor spatial binding constraints in vivo, we developed a new integrative computational method, genome wide event finding and motif discovery (GEM). GEM resolves ChIP data into explanatory motifs and binding events at high spatial resolution by linking binding event discovery and motif discovery with positional priors in the context of a generative probabilistic model of ChIP data and genome sequence. GEM analysis of 63 transcription factors in 214 ENCODE human ChIP-Seq experiments recovers more known factor motifs than other contemporary methods, and discovers six new motifs for factors with unknown binding specificity. GEM's adaptive learning of binding-event read distributions allows it to further improve upon previous methods for processing ChIP-Seq and ChIP-exo data to yield unsurpassed spatial resolution and discovery of closely spaced binding events of the same factor. In a systematic analysis of in vivo sequence-specific transcription factor binding using GEM, we have found hundreds of spatial binding constraints between factors. GEM found 37 examples of factor binding constraints in mouse ES cells, including strong distance-specific constraints between Klf4 and other key regulatory factors. In human ENCODE data, GEM found 390 examples of spatially constrained pair-wise binding, including such novel pairs as c-Fos:c-Jun/USF1, CTCF/Egr1, and HNF4A/FOXA1. The discovery of new factor-factor spatial constraints in ChIP data is significant because it proposes testable models for regulatory factor interactions that will help elucidate genome function and the implementation of combinatorial control.

摘要

基因组功能的一个重要组成部分是基因组调控元件的语法,它决定了不同的转录因子如何相互作用,以协调调控控制程序。精确描述关键转录因子之间的体内间隔约束将揭示这种基因组调控语言的关键方面。为了在体内发现新的转录因子空间结合约束,我们开发了一种新的综合计算方法,即全基因组事件发现和基序发现(GEM)。GEM 通过将结合事件发现和基序发现与基因组序列中的位置先验联系起来,在 ChIP 数据和基因组序列的生成概率模型的背景下,将 ChIP 数据解析为高空间分辨率的解释性基序和结合事件。GEM 对 214 个 ENCODE 人类 ChIP-Seq 实验中的 63 个转录因子进行分析,比其他当代方法恢复了更多已知的因子基序,并为具有未知结合特异性的因子发现了六个新基序。GEM 自适应学习结合事件读取分布,使其能够进一步改进以前的处理 ChIP-Seq 和 ChIP-exo 数据的方法,从而以无与伦比的空间分辨率和相同因子的紧密间隔结合事件的发现来提高性能。在使用 GEM 对体内序列特异性转录因子结合进行的系统分析中,我们发现了数百个因子之间的空间结合约束。GEM 在小鼠 ES 细胞中发现了 37 个因子结合约束的例子,包括 Klf4 与其他关键调节因子之间强烈的距离特异性约束。在人类 ENCODE 数据中,GEM 发现了 390 个空间受限的成对结合实例,包括 c-Fos:c-Jun/USF1、CTCF/Egr1 和 HNF4A/FOXA1 等新的对。在 ChIP 数据中发现新的因子-因子空间约束具有重要意义,因为它提出了可用于调节因子相互作用的可测试模型,这将有助于阐明基因组功能和组合控制的实施。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6e0/3415389/f59ee916e0f9/pcbi.1002638.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验