Institute of Life Sciences, Université catholique de Louvain , Croix du Sud, 1, bte L7.04.01, B-1348 Louvain-la-Neuve, Belgium.
ACS Chem Biol. 2014 Feb 21;9(2):485-94. doi: 10.1021/cb400794e. Epub 2013 Dec 6.
The large adhesin protein LapA mediates adhesion and biofilm formation by Pseudomonas fluorescens. Although adhesion is thought to involve the long multiple repeats of LapA, very little is known about the molecular mechanism by which this protein mediates attachment. Here we use atomic force microscopy to unravel the biophysical properties driving LapA-mediated adhesion. Single-cell force spectroscopy shows that expression of LapA on the cell surface via biofilm-inducing conditions (i.e., phosphate-rich medium) or deletion of the gene encoding the LapG protease (LapA+ mutant) increases the adhesion strength of P. fluorescens toward hydrophobic and hydrophilic substrates, consistent with the adherent phenotypes observed in these conditions. Substrate chemistry plays an unexpected role in modulating the mechanical response of LapA, with sequential unfolding of the multiple repeats occurring only on hydrophilic substrates. Biofilm induction also leads to shortening of the protein extensions, reflecting stiffening of their conformational properties. Using single-molecule force spectroscopy, we next demonstrate that the adhesin is randomly distributed on the surface of wild-type cells and can be released into the solution. For LapA+ mutant cells, we found that the adhesin massively accumulates on the cell surface without being released and that individual LapA repeats unfold when subjected to force. The remarkable adhesive and mechanical properties of LapA provide a molecular basis for the "multi-purpose" adhesion function of LapA, thereby making P. fluorescens capable of colonizing diverse environments.
大粘附素蛋白 LapA 介导荧光假单胞菌的粘附和生物膜形成。尽管粘附被认为涉及 LapA 的长重复序列,但这种蛋白介导附着的分子机制知之甚少。在这里,我们使用原子力显微镜揭示了驱动 LapA 介导粘附的生物物理特性。单细胞力谱表明,通过生物膜诱导条件(即富含磷酸盐的培养基)在细胞表面表达 LapA 或缺失编码 LapG 蛋白酶的基因(LapA+ 突变体)会增加荧光假单胞菌对疏水性和亲水性底物的粘附强度,与这些条件下观察到的粘附表型一致。底物化学在调节 LapA 的机械响应中起着意想不到的作用,只有在亲水底物上才会发生多个重复的顺序展开。生物膜诱导也导致蛋白延伸缩短,反映出其构象特性的变硬。接下来,我们使用单分子力谱证明,粘附素随机分布在野生型细胞表面,可以释放到溶液中。对于 LapA+ 突变体细胞,我们发现粘附素大量积聚在细胞表面而不会释放,并且当受到力作用时,单个 LapA 重复序列会展开。LapA 的显著粘附和机械特性为 LapA 的“多用途”粘附功能提供了分子基础,从而使荧光假单胞菌能够定植于多种环境中。