Bauer Maximilian, Godec Aljaž, Metzler Ralf
Institute of Physics and Astronomy, University of Potsdam, D-14476 Potsdam-Golm, Germany.
Phys Chem Chem Phys. 2014 Apr 7;16(13):6118-28. doi: 10.1039/c3cp55160a.
Diffusion of chemicals or tracer molecules through complex systems containing irregularly shaped channels is important in many applications. Most theoretical studies based on the famed Fick-Jacobs equation focus on the idealised case of infinitely small particles and reflecting boundaries. In this study we use numerical simulations to consider the transport of finite-size particles through asymmetrical two-dimensional channels. Additionally, we examine transient binding of the molecules to the channel walls by applying sticky boundary conditions. We consider an ensemble of particles diffusing in independent channels, which are characterised by common structural parameters. We compare our results for the long-time effective diffusion coefficient with a recent theoretical formula obtained by Dagdug and Pineda [J. Chem. Phys., 2012, 137, 024107].
化学物质或示踪分子在包含形状不规则通道的复杂系统中的扩散在许多应用中都很重要。大多数基于著名的菲克 - 雅各布斯方程的理论研究都集中在无限小颗粒和反射边界的理想化情况。在本研究中,我们使用数值模拟来考虑有限尺寸颗粒通过不对称二维通道的输运。此外,我们通过应用粘性边界条件来研究分子与通道壁的瞬态结合。我们考虑在独立通道中扩散的一组颗粒,这些通道由共同的结构参数表征。我们将我们关于长时间有效扩散系数的结果与Dagdug和Pineda [《化学物理杂志》,2012年,137,024107]最近得到的理论公式进行比较。