Breitwieser G E, Szabo G
Department of Physiology and Biophysics, University of Texas Medical Branch, Galveston 77550.
J Gen Physiol. 1988 Apr;91(4):469-93. doi: 10.1085/jgp.91.4.469.
The role of a guanine nucleotide-binding protein (Gk) in the coupling between muscarinic receptor activation and opening of an inwardly rectifying K+ channel [IK(M)] was examined in cardiac atrial myocytes, using hydrolysis-resistant GTP analogues. In the absence of muscarinic agonist, GTP analogues produced a membrane current characteristic of IK(M). The initial rate of appearance of this receptor-independent IK(M) was measured for the various analogues in order to explore the kinetic properties of IK(M) activation. We found that IK(M) activation is controlled solely by the intracellular analogue/GTP ratio and not by the absolute concentrations of the nucleotides. Analogues competed with GTP for binding to Gk with the following relative affinities: GTP gamma S greater than GTP greater than GppNHp greater than GppCH2p. At sufficiently high intracellular concentrations, however, all GTP analogues produced the same rate of IK(M) activation. This analogue-independent limiting rate is likely to correspond to the rate of GDP release from inactive, GDP-bound Gk. Muscarinic receptor stimulation by nanomolar concentrations of acetylcholine (ACh), which do not elicit IK(M) under control conditions, catalyzed IK(M) activation in the presence of GTP analogues. The rate of Gk activation by ACh (kACh) was found to be described by the simple relationship kACh = 8.4 X 10(8) min-1 M-1.[ACh] + 0.44 min-1, the first term of which presumably reflects the agonist-catalyzed rate of GDP release from the Gk.GDP complex, while the second term corresponds to the basal rate of receptor-independent GDP release. Combined with the estimated K0.5 of the IK(M)-[ACh] dose-effect relationship, 160 nM, this result also allowed us to estimate the rate of Gk.GTP hydrolysis, kcat, to be near 135 min-1. These results provide, for the first time, a quantitative description of the salient features of G-protein function in vivo.
利用抗水解的GTP类似物,在心房肌细胞中研究了鸟嘌呤核苷酸结合蛋白(Gk)在毒蕈碱受体激活与内向整流钾通道[IK(M)]开放之间偶联过程中的作用。在没有毒蕈碱激动剂的情况下,GTP类似物产生了IK(M)特有的膜电流。为了探究IK(M)激活的动力学特性,测定了各种类似物产生这种非受体依赖性IK(M)的初始速率。我们发现IK(M)的激活仅受细胞内类似物/GTP比例的控制,而不受核苷酸绝对浓度的影响。类似物与GTP竞争与Gk结合,其相对亲和力如下:GTPγS>GTP>GppNHp>GppCH2p。然而,在足够高的细胞内浓度下,所有GTP类似物产生相同的IK(M)激活速率。这种与类似物无关的极限速率可能对应于GDP从无活性的、结合GDP的Gk上释放的速率。纳摩尔浓度的乙酰胆碱(ACh)在对照条件下不会引发IK(M),但在存在GTP类似物的情况下,毒蕈碱受体刺激可催化IK(M)激活。发现ACh对Gk的激活速率(kACh)可用简单关系kACh = 8.4×10(8) min-1 M-1·[ACh] + 0.44 min-1来描述,其中第一项可能反映了激动剂催化的GDP从Gk·GDP复合物中释放的速率,而第二项对应于非受体依赖性GDP释放的基础速率。结合估计的IK(M)-[ACh]剂量效应关系的K0.5(160 nM),该结果还使我们能够估计Gk·GTP水解的速率kcat接近135 min-1。这些结果首次对体内G蛋白功能的显著特征进行了定量描述。