Suppr超能文献

气管阻塞诱发大鼠呼吸负荷代偿及抑制性神经递质表达

Tracheal occlusion-evoked respiratory load compensation and inhibitory neurotransmitter expression in rats.

作者信息

Tsai Hsiu-Wen, Davenport Paul W

机构信息

Department of Physiological Sciences, University of Florida, Gainesville, Florida.

出版信息

J Appl Physiol (1985). 2014 Apr 15;116(8):1006-16. doi: 10.1152/japplphysiol.01256.2013. Epub 2014 Feb 20.

Abstract

Respiratory load compensation is a sensory-motor reflex generated in the brain stem respiratory neural network. The nucleus of the solitary tract (NTS) is thought to be the primary structure to process the respiratory load-related afferent activity and contribute to the modification of the breathing pattern by sending efferent projections to other structures in the brain stem respiratory neural network. The sensory pathway and motor responses of respiratory load compensation have been studied extensively; however, the mechanism of neurogenesis of load compensation is still unknown. A variety of studies has shown that inhibitory interconnections among the brain stem respiratory groups play critical roles for the genesis of respiratory rhythm and pattern. The purpose of this study was to examine whether inhibitory glycinergic neurons in the NTS were activated by external and transient tracheal occlusions (ETTO) in anesthetized animals. The results showed that ETTO produced load compensation responses with increased inspiratory, expiratory, and total breath time, as well as elevated activation of inhibitory glycinergic neurons in the caudal NTS (cNTS) and intermediate NTS (iNTS). Vagotomized animals receiving transient respiratory loads did not exhibit these load compensation responses. In addition, vagotomy significantly reduced the activation of inhibitory glycinergic neurons in the cNTS and iNTS. The results suggest that these activated inhibitory glycinergic neurons in the NTS might be essential for the neurogenesis of load compensation responses in anesthetized animals.

摘要

呼吸负荷补偿是一种在脑干呼吸神经网络中产生的感觉运动反射。孤束核(NTS)被认为是处理与呼吸负荷相关的传入活动的主要结构,并通过向脑干呼吸神经网络中的其他结构发送传出投射来促进呼吸模式的改变。呼吸负荷补偿的感觉通路和运动反应已经得到了广泛研究;然而,负荷补偿的神经发生机制仍然未知。各种研究表明,脑干呼吸组之间的抑制性相互连接对呼吸节律和模式的产生起着关键作用。本研究的目的是检查在麻醉动物中,NTS中的抑制性甘氨酸能神经元是否会被外部短暂气管阻塞(ETTO)激活。结果表明,ETTO产生了负荷补偿反应,吸气、呼气和总呼吸时间增加,同时尾侧NTS(cNTS)和中间NTS(iNTS)中抑制性甘氨酸能神经元的激活增强。接受短暂呼吸负荷的迷走神经切断动物未表现出这些负荷补偿反应。此外,迷走神经切断术显著降低了cNTS和iNTS中抑制性甘氨酸能神经元的激活。结果表明,NTS中这些被激活的抑制性甘氨酸能神经元可能对麻醉动物负荷补偿反应的神经发生至关重要。

相似文献

1
Tracheal occlusion-evoked respiratory load compensation and inhibitory neurotransmitter expression in rats.
J Appl Physiol (1985). 2014 Apr 15;116(8):1006-16. doi: 10.1152/japplphysiol.01256.2013. Epub 2014 Feb 20.
3
Tracheal occlusions evoke respiratory load compensation and neural activation in anesthetized rats.
J Appl Physiol (1985). 2012 Feb;112(3):435-42. doi: 10.1152/japplphysiol.01321.2010. Epub 2011 Nov 10.
7
Effects of hypercapnia and flow-resistive loading on tracheal pressure during airway occlusion.
J Appl Physiol. 1976 Mar;40(3):345-51. doi: 10.1152/jappl.1976.40.3.345.
8
The PVN enhances cardiorespiratory responses to acute hypoxia via input to the nTS.
Am J Physiol Regul Integr Comp Physiol. 2019 Dec 1;317(6):R818-R833. doi: 10.1152/ajpregu.00135.2019. Epub 2019 Sep 11.
9
NMDA receptors contribute to primary visceral afferent transmission in the nucleus of the solitary tract.
J Neurophysiol. 1997 May;77(5):2539-48. doi: 10.1152/jn.1997.77.5.2539.
10
Extensive Inhibitory Gating of Viscerosensory Signals by a Sparse Network of Somatostatin Neurons.
J Neurosci. 2019 Oct 9;39(41):8038-8050. doi: 10.1523/JNEUROSCI.3036-18.2019. Epub 2019 Aug 30.

引用本文的文献

本文引用的文献

1
Identification of neurotransmitters and co-localization of transmitters in brainstem respiratory neurons.
Respir Physiol Neurobiol. 2008 Dec 10;164(1-2):18-27. doi: 10.1016/j.resp.2008.07.024.
2
The chemical neuroanatomy of breathing.
Respir Physiol Neurobiol. 2008 Dec 10;164(1-2):3-11. doi: 10.1016/j.resp.2008.07.014.
3
Reconfiguration of the pontomedullary respiratory network: a computational modeling study with coordinated in vivo experiments.
J Neurophysiol. 2008 Oct;100(4):1770-99. doi: 10.1152/jn.90416.2008. Epub 2008 Jul 23.
4
Spatial organization and state-dependent mechanisms for respiratory rhythm and pattern generation.
Prog Brain Res. 2007;165:201-20. doi: 10.1016/S0079-6123(06)65013-9.
5
Central pathways of pulmonary and lower airway vagal afferents.
J Appl Physiol (1985). 2006 Aug;101(2):618-27. doi: 10.1152/japplphysiol.00252.2006. Epub 2006 Apr 27.
7
EXTERNAL INTERCOSTAL AND PHRENIC ALPHA-MOTOR RESPONSES TO CHANGES IN RESPIRATORY LOAD.
Acta Physiol Scand. 1965 Mar;63:391-400. doi: 10.1111/j.1748-1716.1965.tb04079.x.
8
THE IMMEDIATE EFFECTS OF ADDED LOADS ON THE INSPIRATORY MUSCULATURE OF THE RABBIT.
J Physiol. 1964 Aug;172(3):321-31. doi: 10.1113/jphysiol.1964.sp007420.
9
Molecular maps of neural activity and quiescence.
Acta Neurobiol Exp (Wars). 2000;60(3):403-10. doi: 10.55782/ane-2000-1359.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验