Gan Haitao, Sang Nong, Huang Rui
J Opt Soc Am A Opt Image Sci Vis. 2014 Jan 1;31(1):1-6. doi: 10.1364/JOSAA.31.000001.
Face recognition is one of the most important applications of machine learning and computer vision. The traditional supervised learning methods require a large amount of labeled face images to achieve good performance. In practice, however, labeled images are usually scarce while unlabeled ones may be abundant. In this paper, we introduce a semi-supervised face recognition method, in which semi-supervised linear discriminant analysis (SDA) and affinity propagation (AP) are integrated into a self-training framework. In particular, SDA is employed to compute the face subspace using both labeled and unlabeled images, and AP is used to identify the exemplars of different face classes in the subspace. The unlabeled data can then be classified according to the exemplars and the newly labeled data with the highest confidence are added to the labeled data, and the whole procedure iterates until convergence. A series of experiments on four face datasets are carried out to evaluate the performance of our algorithm. Experimental results illustrate that our algorithm outperforms the other unsupervised, semi-supervised, and supervised methods.
人脸识别是机器学习和计算机视觉最重要的应用之一。传统的监督学习方法需要大量带标签的人脸图像才能取得良好的性能。然而,在实际应用中,带标签的图像通常很少,而未带标签的图像可能很多。在本文中,我们介绍了一种半监督人脸识别方法,该方法将半监督线性判别分析(SDA)和亲和传播(AP)集成到一个自训练框架中。具体来说,SDA用于使用带标签和未带标签的图像来计算人脸子空间,而AP用于在子空间中识别不同人脸类别的样本。然后,可以根据这些样本对未带标签的数据进行分类,并将具有最高置信度的新带标签数据添加到带标签的数据中,整个过程迭代进行,直到收敛。我们在四个面部数据集上进行了一系列实验,以评估我们算法的性能。实验结果表明,我们的算法优于其他无监督、半监督和监督方法。