Verdel Nina, Tanevski Jovan, Džeroski Sašo, Majaron Boris
Department of Complex Matter, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia.
Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia.
Biomed Opt Express. 2020 Feb 28;11(3):1679-1696. doi: 10.1364/BOE.384982. eCollection 2020 Mar 1.
We have recently introduced a novel methodology for the noninvasive analysis of the structure and composition of human skin . The approach combines pulsed photothermal radiometry (PPTR), involving time-resolved measurements of mid-infrared emission after irradiation with a millisecond light pulse, and diffuse reflectance spectroscopy (DRS) in the visible part of the spectrum. Simultaneous fitting of both data sets with respective predictions from a numerical model of light transport in human skin enables the assessment of the contents of skin chromophores (melanin, oxy-, and deoxy-hemoglobin), as well as scattering properties and thicknesses of the epidermis and dermis. However, the involved iterative optimization of 14 skin model parameters using a numerical forward model (, inverse Monte Carlo - IMC) is computationally very expensive. In order to overcome this drawback, we have constructed a very fast predictive model (PM) based on machine learning. The PM involves random forests, trained on ∼9,000 examples computed using our forward MC model. We show that the performance of such a PM is very satisfying, both in objective testing using cross-validation and in direct comparisons with the IMC procedure. We also present a hybrid approach (HA), which combines the speed of the PM with versatility of the IMC procedure. Compared with the latter, the HA improves both the accuracy and robustness of the inverse analysis, while significantly reducing the computation times.
我们最近引入了一种用于非侵入性分析人体皮肤结构和成分的新方法。该方法结合了脉冲光热辐射测量法(PPTR),即通过毫秒级光脉冲照射后对中红外发射进行时间分辨测量,以及光谱可见部分的漫反射光谱法(DRS)。将这两个数据集与人体皮肤光传输数值模型的各自预测结果同时进行拟合,能够评估皮肤发色团(黑色素、氧合血红蛋白和脱氧血红蛋白)的含量,以及表皮和真皮的散射特性和厚度。然而,使用数值正向模型(逆蒙特卡罗 - IMC)对14个皮肤模型参数进行迭代优化的计算成本非常高。为了克服这一缺点,我们构建了一个基于机器学习的非常快速的预测模型(PM)。该PM涉及随机森林,使用我们的正向MC模型计算的约9000个示例进行训练。我们表明,这样的PM在使用交叉验证的客观测试以及与IMC程序的直接比较中,性能都非常令人满意。我们还提出了一种混合方法(HA),它将PM的速度与IMC程序的通用性相结合。与后者相比,HA提高了逆分析的准确性和稳健性,同时显著减少了计算时间。