Suppr超能文献

Menin 对于 microRNA let-7a 的最佳加工是必需的。

Menin is required for optimal processing of the microRNA let-7a.

机构信息

From the Abramson Family Cancer Research Institute, Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104.

出版信息

J Biol Chem. 2014 Apr 4;289(14):9902-8. doi: 10.1074/jbc.M113.520692. Epub 2014 Feb 21.

Abstract

Multiple endocrine neoplasia type I (MEN1) is an inherited syndrome that includes susceptibility to pancreatic islet hyperplasia. This syndrome results from mutations in the MEN1 gene, which encodes menin protein. Menin interacts with several transcription factors, including JunD, and inhibits their activities. However, the precise mechanism by which menin suppresses gene expression is not well understood. Here, we show that menin interacts with arsenite-resistant protein 2 (ARS2), a component of the nuclear RNA CAP-binding complex that is crucial for biogenesis of certain miRNAs including let-7a. The levels of primary-let-7a (pri-let-7a) are not affected by menin; however, the levels of mature let-7a are substantially decreased upon Men1 excision. Let-7a targets, including Insr and Irs2, pro-proliferative genes that are crucial for insulin-mediated signaling, are up-regulated in Men1-excised cells. Inhibition of let-7a using anti-miRNA in wild type cells is sufficient to enhance the expression of insulin receptor substrate 2 (IRS2) to levels observed in Men1-excised cells. Depletion of menin does not affect the expression of Drosha and CBP80, but substantially impairs the processing of pri-miRNA to pre-miRNA. Ars2 knockdown decreased let-7a processing in menin-expressing cells but had little impact on let-7a levels in menin-excised cells. As IRS2 is known to mediate insulin signaling and insulin/mitogen-induced cell proliferation, these findings collectively unravel a novel mechanism whereby menin suppresses cell proliferation, at least partly by promoting the processing of certain miRNAs, including let-7a, leading to suppression of Irs2 expression and insulin signaling.

摘要

多发性内分泌肿瘤 1 型(MEN1)是一种遗传性综合征,包括胰岛增生易感性。该综合征是由 MEN1 基因突变引起的,该基因编码 menin 蛋白。Menin 与几种转录因子相互作用,包括 JunD,并抑制它们的活性。然而,menin 抑制基因表达的确切机制尚不清楚。在这里,我们表明 menin 与砷酸盐抗性蛋白 2(ARS2)相互作用,ARS2 是核 RNA CAP 结合复合物的一个组成部分,对于某些 miRNA(包括 let-7a)的生物发生至关重要。menin 不会影响初级 let-7a(pri-let-7a)的水平;然而,成熟 let-7a 的水平在 Men1 缺失后显著降低。let-7a 的靶标,包括 Insr 和 Irs2,是胰岛素介导的信号传导所必需的促增殖基因,在 Men1 缺失的细胞中上调。在野生型细胞中使用抗 miRNA 抑制 let-7a 足以将胰岛素受体底物 2(IRS2)的表达水平提高到 Men1 缺失细胞中观察到的水平。Menin 的缺失不影响 Drosha 和 CBP80 的表达,但会严重影响 pri-miRNA 向 pre-miRNA 的加工。Ars2 的敲低降低了 menin 表达细胞中的 let-7a 加工,但对 menin 缺失细胞中的 let-7a 水平几乎没有影响。由于 IRS2 已知介导胰岛素信号和胰岛素/有丝分裂原诱导的细胞增殖,这些发现共同揭示了一种新的机制,即 menin 通过促进某些 miRNA(包括 let-7a)的加工来抑制细胞增殖,至少部分地抑制 IRS2 表达和胰岛素信号。

相似文献

1
Menin is required for optimal processing of the microRNA let-7a.
J Biol Chem. 2014 Apr 4;289(14):9902-8. doi: 10.1074/jbc.M113.520692. Epub 2014 Feb 21.
2
Menin-mediated regulation of miRNA biogenesis uncovers the IRS2 pathway as a target for regulating pancreatic beta cells.
Oncoscience. 2014 Sep 15;1(9):562-6. doi: 10.18632/oncoscience.79. eCollection 2014.
3
Menin epigenetically represses Hedgehog signaling in MEN1 tumor syndrome.
Cancer Res. 2013 Apr 15;73(8):2650-8. doi: 10.1158/0008-5472.CAN-12-3158. Epub 2013 Apr 11.
4
Role of miR-24 in Multiple Endocrine Neoplasia Type 1: A Potential Target for Molecular Therapy.
Int J Mol Sci. 2021 Jul 8;22(14):7352. doi: 10.3390/ijms22147352.
5
Menin promotes the Wnt signaling pathway in pancreatic endocrine cells.
Mol Cancer Res. 2008 Dec;6(12):1894-907. doi: 10.1158/1541-7786.MCR-07-2206.
6
Menin molecular interactions: insights into normal functions and tumorigenesis.
Horm Metab Res. 2005 Jun;37(6):369-74. doi: 10.1055/s-2005-870139.

引用本文的文献

1
Association of Genetic Polymorphisms in MicroRNAs With Type 2 Diabetes Mellitus in a Chinese Population.
Front Endocrinol (Lausanne). 2021 Feb 8;11:587561. doi: 10.3389/fendo.2020.587561. eCollection 2020.
2
MiR-132 controls pancreatic beta cell proliferation and survival through Pten/Akt/Foxo3 signaling.
Mol Metab. 2020 Jan;31:150-162. doi: 10.1016/j.molmet.2019.11.012. Epub 2019 Nov 22.
3
Lessons from basic pancreatic beta cell research in type-2 diabetes and vascular complications.
Diabetol Int. 2017 Jan 23;8(2):139-152. doi: 10.1007/s13340-017-0304-4. eCollection 2017 Jun.
4
5
Epigenetic regulation by the menin pathway.
Endocr Relat Cancer. 2017 Oct;24(10):T147-T159. doi: 10.1530/ERC-17-0298. Epub 2017 Aug 15.
6
Polymorphisms of microRNA target genes , , and in gastric cancer.
World J Gastroenterol. 2017 May 21;23(19):3480-3487. doi: 10.3748/wjg.v23.i19.3480.
7
Menin and PRMT5 suppress GLP1 receptor transcript and PKA-mediated phosphorylation of FOXO1 and CREB.
Am J Physiol Endocrinol Metab. 2017 Aug 1;313(2):E148-E166. doi: 10.1152/ajpendo.00241.2016. Epub 2017 Mar 7.
8
Role of miRNAs in the pathogenesis and susceptibility of diabetes mellitus.
J Hum Genet. 2017 Feb;62(2):141-150. doi: 10.1038/jhg.2016.150. Epub 2016 Dec 8.
9
β-Cell MicroRNAs: Small but Powerful.
Diabetes. 2015 Nov;64(11):3631-44. doi: 10.2337/db15-0831.
10
Midbrain dopamine neurons in Parkinson's disease exhibit a dysregulated miRNA and target-gene network.
Brain Res. 2015 Aug 27;1618:111-21. doi: 10.1016/j.brainres.2015.05.021. Epub 2015 Jun 3.

本文引用的文献

1
Menin epigenetically represses Hedgehog signaling in MEN1 tumor syndrome.
Cancer Res. 2013 Apr 15;73(8):2650-8. doi: 10.1158/0008-5472.CAN-12-3158. Epub 2013 Apr 11.
2
miRNA profiling of cancer.
Curr Opin Genet Dev. 2013 Feb;23(1):3-11. doi: 10.1016/j.gde.2013.01.004. Epub 2013 Mar 4.
3
The trithorax protein partner menin acts in tandem with EZH2 to suppress C/EBPα and differentiation in MLL-AF9 leukemia.
Haematologica. 2013 Jun;98(6):918-27. doi: 10.3324/haematol.2012.074195. Epub 2013 Jan 24.
4
MicroRNA-7 regulates the mTOR pathway and proliferation in adult pancreatic β-cells.
Diabetes. 2013 Mar;62(3):887-95. doi: 10.2337/db12-0451. Epub 2012 Dec 6.
5
The regulatory network menin-microRNA 26a as a possible target for RNA-based therapy of bone diseases.
Nucleic Acid Ther. 2012 Apr;22(2):103-8. doi: 10.1089/nat.2012.0344. Epub 2012 Mar 12.
6
The same pocket in menin binds both MLL and JUND but has opposite effects on transcription.
Nature. 2012 Feb 12;482(7386):542-6. doi: 10.1038/nature10806.
7
Control of glucose homeostasis and insulin sensitivity by the Let-7 family of microRNAs.
Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21075-80. doi: 10.1073/pnas.1118922109. Epub 2011 Dec 12.
8
MicroRNAs in development and disease.
Physiol Rev. 2011 Jul;91(3):827-87. doi: 10.1152/physrev.00006.2010.
9
MicroRNAs in β-cell biology, insulin resistance, diabetes and its complications.
Diabetes. 2011 Jul;60(7):1825-31. doi: 10.2337/db11-0171.
10
Insulin regulates menin expression, cytoplasmic localization, and interaction with FOXO1.
Am J Physiol Endocrinol Metab. 2011 Sep;301(3):E474-83. doi: 10.1152/ajpendo.00022.2011. Epub 2011 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验