Saegusa Takumi, Wellner Jon A
Department of Biostatistics, University of Washington, Seattle, Washington 98195-7232, USA,
Ann Stat. 2013 Feb 1;41(1):269-295. doi: 10.1214/12-AOS1073.
We develop asymptotic theory for weighted likelihood estimators (WLE) under two-phase stratified sampling without replacement. We also consider several variants of WLEs involving estimated weights and calibration. A set of empirical process tools are developed including a Glivenko-Cantelli theorem, a theorem for rates of convergence of -estimators, and a Donsker theorem for the inverse probability weighted empirical processes under two-phase sampling and sampling without replacement at the second phase. Using these general results, we derive asymptotic distributions of the WLE of a finite-dimensional parameter in a general semiparametric model where an estimator of a nuisance parameter is estimable either at regular or nonregular rates. We illustrate these results and methods in the Cox model with right censoring and interval censoring. We compare the methods via their asymptotic variances under both sampling without replacement and the more usual (and easier to analyze) assumption of Bernoulli sampling at the second phase.
我们为无放回的两阶段分层抽样下的加权似然估计量(WLE)建立了渐近理论。我们还考虑了涉及估计权重和校准的几种WLE变体。开发了一组经验过程工具,包括一个Glivenko - Cantelli定理、一个关于 - 估计量收敛速度的定理,以及一个关于两阶段抽样和第二阶段无放回抽样下逆概率加权经验过程的Donsker定理。利用这些一般结果,我们推导了一般半参数模型中有限维参数的WLE的渐近分布,其中干扰参数的估计量可以以正则或非正则速率进行估计。我们在具有右删失和区间删失的Cox模型中说明了这些结果和方法。我们通过在无放回抽样以及第二阶段更常见(且更易于分析)的伯努利抽样假设下的渐近方差来比较这些方法。