Suppr超能文献

两阶段抽样下的加权似然估计

WEIGHTED LIKELIHOOD ESTIMATION UNDER TWO-PHASE SAMPLING.

作者信息

Saegusa Takumi, Wellner Jon A

机构信息

Department of Biostatistics, University of Washington, Seattle, Washington 98195-7232, USA,

出版信息

Ann Stat. 2013 Feb 1;41(1):269-295. doi: 10.1214/12-AOS1073.

Abstract

We develop asymptotic theory for weighted likelihood estimators (WLE) under two-phase stratified sampling without replacement. We also consider several variants of WLEs involving estimated weights and calibration. A set of empirical process tools are developed including a Glivenko-Cantelli theorem, a theorem for rates of convergence of -estimators, and a Donsker theorem for the inverse probability weighted empirical processes under two-phase sampling and sampling without replacement at the second phase. Using these general results, we derive asymptotic distributions of the WLE of a finite-dimensional parameter in a general semiparametric model where an estimator of a nuisance parameter is estimable either at regular or nonregular rates. We illustrate these results and methods in the Cox model with right censoring and interval censoring. We compare the methods via their asymptotic variances under both sampling without replacement and the more usual (and easier to analyze) assumption of Bernoulli sampling at the second phase.

摘要

我们为无放回的两阶段分层抽样下的加权似然估计量(WLE)建立了渐近理论。我们还考虑了涉及估计权重和校准的几种WLE变体。开发了一组经验过程工具,包括一个Glivenko - Cantelli定理、一个关于 - 估计量收敛速度的定理,以及一个关于两阶段抽样和第二阶段无放回抽样下逆概率加权经验过程的Donsker定理。利用这些一般结果,我们推导了一般半参数模型中有限维参数的WLE的渐近分布,其中干扰参数的估计量可以以正则或非正则速率进行估计。我们在具有右删失和区间删失的Cox模型中说明了这些结果和方法。我们通过在无放回抽样以及第二阶段更常见(且更易于分析)的伯努利抽样假设下的渐近方差来比较这些方法。

相似文献

1
WEIGHTED LIKELIHOOD ESTIMATION UNDER TWO-PHASE SAMPLING.
Ann Stat. 2013 Feb 1;41(1):269-295. doi: 10.1214/12-AOS1073.
2
Estimation in the semiparametric accelerated failure time model with missing covariates: improving efficiency through augmentation.
J Am Stat Assoc. 2017;112(519):1221-1235. doi: 10.1080/01621459.2016.1205500. Epub 2017 Apr 25.
3
Collaborative double robust targeted maximum likelihood estimation.
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.
7
A Generally Efficient Targeted Minimum Loss Based Estimator based on the Highly Adaptive Lasso.
Int J Biostat. 2017 Oct 12;13(2):/j/ijb.2017.13.issue-2/ijb-2015-0097/ijb-2015-0097.xml. doi: 10.1515/ijb-2015-0097.
8
On inverse probability-weighted estimators in the presence of interference.
Biometrika. 2016 Dec;103(4):829-842. doi: 10.1093/biomet/asw047. Epub 2016 Dec 8.
10
Calibration weighted estimation of semiparametric transformation models for two-phase sampling.
Stat Med. 2015 May 10;34(10):1695-707. doi: 10.1002/sim.6439. Epub 2015 Feb 4.

引用本文的文献

1
Cluster Randomized Trials Designed to Support Generalizable Inferences.
Eval Rev. 2024 Dec;48(6):1088-1114. doi: 10.1177/0193841X231169557. Epub 2024 Jan 17.
3
Regression Analysis of Case-cohort Studies in the Presence of Dependent Interval Censoring.
J Appl Stat. 2021;48(5):846-865. doi: 10.1080/02664763.2020.1752633. Epub 2020 Apr 14.
4
Improved generalized raking estimators to address dependent covariate and failure-time outcome error.
Biom J. 2021 Jun;63(5):1006-1027. doi: 10.1002/bimj.202000187. Epub 2021 Mar 11.
5
Raking and regression calibration: Methods to address bias from correlated covariate and time-to-event error.
Stat Med. 2021 Feb 10;40(3):631-649. doi: 10.1002/sim.8793. Epub 2020 Nov 2.
6
On the analysis of two-phase designs in cluster-correlated data settings.
Stat Med. 2019 Oct 15;38(23):4611-4624. doi: 10.1002/sim.8321. Epub 2019 Jul 29.
7
Augmented pseudo-likelihood estimation for two-phase studies.
Stat Methods Med Res. 2020 Feb;29(2):344-358. doi: 10.1177/0962280219833415. Epub 2019 Mar 5.
8
Evaluating classification performance of biomarkers in two-phase case-control studies.
Stat Med. 2019 Jan 15;38(1):100-114. doi: 10.1002/sim.7966. Epub 2018 Sep 12.
9
IMPROVING EFFICIENCY IN BIOMARKER INCREMENTAL VALUE EVALUATION UNDER TWO-PHASE DESIGNS.
Ann Appl Stat. 2017 Jun;11(2):638-654. doi: 10.1214/16-AOAS997. Epub 2017 Jul 20.
10
Case-cohort studies with interval-censored failure time data.
Biometrika. 2017 Mar;104(1):17-29. doi: 10.1093/biomet/asw067. Epub 2017 Feb 3.

本文引用的文献

1
Connections between survey calibration estimators and semiparametric models for incomplete data.
Int Stat Rev. 2011 Aug;79(2):200-220. doi: 10.1111/j.1751-5823.2011.00138.x.
4
Using the whole cohort in the analysis of case-cohort data.
Am J Epidemiol. 2009 Jun 1;169(11):1398-405. doi: 10.1093/aje/kwp055. Epub 2009 Apr 8.
5
A two stage design for the study of the relationship between a rare exposure and a rare disease.
Am J Epidemiol. 1982 Jan;115(1):119-28. doi: 10.1093/oxfordjournals.aje.a113266.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验