Suppr超能文献

计算机实验进化:一种测试进化情景的工具。

In silico experimental evolution: a tool to test evolutionary scenarios.

出版信息

BMC Bioinformatics. 2013;14 Suppl 15(Suppl 15):S11. doi: 10.1186/1471-2105-14-S15-S11. Epub 2013 Oct 15.

Abstract

Comparative genomics has revealed that some species have exceptional genomes, compared to their closest relatives. For instance, some species have undergone a strong reduction of their genome with a drastic reduction of their genic repertoire. Deciphering the causes of these atypical trajectories can be very difficult because of the many phenomena that are intertwined during their evolution (e.g. changes of population size, environment structure and dynamics, selection strength, mutation rates...). Here we propose a methodology based on synthetic experiments to test the individual effect of these phenomena on a population of simulated organisms. We developed an evolutionary model--aevol--in which evolutionary conditions can be changed one at a time to test their effects on genome size and organization (e.g. coding ratio). To illustrate the proposed approach, we used aevol to test the effects of a strong reduction in the selection strength on a population of (simulated) bacteria. Our results show that this reduction of selection strength leads to a genome reduction of 35% with a slight loss of coding sequences (15% of the genes are lost--mainly those for which the contribution to fitness is the lowest). More surprisingly, under a low selection strength, genomes undergo a strong reduction of the noncoding compartment (~55% of the noncoding sequences being lost). These results are consistent with what is observed in reduced Prochlorococcus strains (marine cyanobacteria) when compared to close relatives.

摘要

比较基因组学揭示,与近亲相比,某些物种的基因组具有特殊性。例如,一些物种的基因组发生了强烈的缩减,基因库也大幅减少。由于在进化过程中存在许多交织在一起的现象(例如种群大小的变化、环境结构和动态、选择强度、突变率等),这些非典型轨迹的原因很难被破解。在这里,我们提出了一种基于合成实验的方法,用于测试这些现象对模拟生物种群的个体影响。我们开发了一种进化模型——aevol,可以一次改变进化条件来测试它们对基因组大小和组织(例如编码比)的影响。为了说明所提出的方法,我们使用 aevol 来测试在(模拟)细菌种群中强烈降低选择强度的影响。我们的结果表明,这种选择强度的降低导致基因组缩小了约 35%,编码序列略有丢失(约 15%的基因丢失——主要是那些对适应性贡献最低的基因)。更令人惊讶的是,在低选择强度下,非编码区经历了强烈的缩减(约 55%的非编码序列丢失)。这些结果与在与近亲相比时观察到的简化的聚球藻菌株(海洋蓝藻)中观察到的结果一致。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c70b/3851946/d535595d8b77/1471-2105-14-S15-S11-1.jpg

相似文献

1
In silico experimental evolution: a tool to test evolutionary scenarios.
BMC Bioinformatics. 2013;14 Suppl 15(Suppl 15):S11. doi: 10.1186/1471-2105-14-S15-S11. Epub 2013 Oct 15.
3
Reductive genome evolution at both ends of the bacterial population size spectrum.
Nat Rev Microbiol. 2014 Dec;12(12):841-50. doi: 10.1038/nrmicro3331. Epub 2014 Sep 15.
4
Accelerated evolution associated with genome reduction in a free-living prokaryote.
Genome Biol. 2005;6(2):R14. doi: 10.1186/gb-2005-6-2-r14. Epub 2005 Jan 14.
5
Genome Evolution of the Obligate Endosymbiont Buchnera aphidicola.
Mol Biol Evol. 2019 Jul 1;36(7):1481-1489. doi: 10.1093/molbev/msz082.
6
Codon usage patterns and adaptive evolution of marine unicellular cyanobacteria Synechococcus and Prochlorococcus.
Mol Phylogenet Evol. 2012 Jan;62(1):206-13. doi: 10.1016/j.ympev.2011.09.013. Epub 2011 Oct 21.
8
Acceleration of genomic evolution caused by enhanced mutation rate in endocellular symbionts.
Proc Natl Acad Sci U S A. 2002 Oct 1;99(20):12944-8. doi: 10.1073/pnas.192449699. Epub 2002 Sep 16.
10
Evolution of minimal-gene-sets in host-dependent bacteria.
Trends Microbiol. 2004 Jan;12(1):37-43. doi: 10.1016/j.tim.2003.11.006.

引用本文的文献

1
The path-label reconciliation (PLR) dissimilarity measure for gene trees.
Algorithms Mol Biol. 2025 Aug 19;20(1):16. doi: 10.1186/s13015-025-00284-8.
2
Genome Streamlining: Effect of Mutation Rate and Population Size on Genome Size Reduction.
Genome Biol Evol. 2024 Dec 4;16(12). doi: 10.1093/gbe/evae250.
3
Innovation in viruses: fitness valley crossing, neutral landscapes, or just duplications?
Virus Evol. 2024 Sep 20;10(1):veae078. doi: 10.1093/ve/veae078. eCollection 2024.
4
Self-replicating artificial neural networks give rise to universal evolutionary dynamics.
PLoS Comput Biol. 2024 Mar 28;20(3):e1012004. doi: 10.1371/journal.pcbi.1012004. eCollection 2024 Mar.
6
avidaR: an R library to perform complex queries on an ontology-based database of digital organisms.
PeerJ Comput Sci. 2023 Sep 19;9:e1568. doi: 10.7717/peerj-cs.1568. eCollection 2023.
7
Evolutionary instability of selfish learning in repeated games.
PNAS Nexus. 2022 Jul 27;1(4):pgac141. doi: 10.1093/pnasnexus/pgac141. eCollection 2022 Sep.
8
Covalent docking and molecular dynamics simulations reveal the specificity-shifting mutations Ala237Arg and Ala237Lys in TEM beta-lactamase.
PLoS Comput Biol. 2022 Jun 27;18(6):e1009944. doi: 10.1371/journal.pcbi.1009944. eCollection 2022 Jun.
9
Simulating the evolutionary trajectories of metabolic pathways for insect symbionts in the genus .
Microb Genom. 2020 Jul;6(7). doi: 10.1099/mgen.0.000378. Epub 2020 Jun 15.

本文引用的文献

1
Microbial evolution in vivo and in silico: methods and applications.
Integr Biol (Camb). 2013 Feb;5(2):262-77. doi: 10.1039/c2ib20095c.
2
New insights into bacterial adaptation through in vivo and in silico experimental evolution.
Nat Rev Microbiol. 2012 Mar 27;10(5):352-65. doi: 10.1038/nrmicro2750.
3
Virtual genomes in flux: an interplay of neutrality and adaptability explains genome expansion and streamlining.
Genome Biol Evol. 2012;4(3):212-29. doi: 10.1093/gbe/evr141. Epub 2012 Jan 10.
4
Extreme genome reduction in symbiotic bacteria.
Nat Rev Microbiol. 2011 Nov 8;10(1):13-26. doi: 10.1038/nrmicro2670.
5
Codon usage patterns and adaptive evolution of marine unicellular cyanobacteria Synechococcus and Prochlorococcus.
Mol Phylogenet Evol. 2012 Jan;62(1):206-13. doi: 10.1016/j.ympev.2011.09.013. Epub 2011 Oct 21.
6
Genome reduction by deletion of paralogs in the marine cyanobacterium Prochlorococcus.
Mol Biol Evol. 2011 Oct;28(10):2751-60. doi: 10.1093/molbev/msr081. Epub 2011 Apr 29.
7
Prochlorococcus: advantages and limits of minimalism.
Ann Rev Mar Sci. 2010;2:305-31. doi: 10.1146/annurev-marine-120308-081034.
8
Scaling laws in bacterial genomes: a side-effect of selection of mutational robustness?
Biosystems. 2010 Oct;102(1):32-40. doi: 10.1016/j.biosystems.2010.07.009. Epub 2010 Jul 23.
9
Genome evolution and adaptation in a long-term experiment with Escherichia coli.
Nature. 2009 Oct 29;461(7268):1243-7. doi: 10.1038/nature08480. Epub 2009 Oct 18.
10
The consequences of genetic drift for bacterial genome complexity.
Genome Res. 2009 Aug;19(8):1450-4. doi: 10.1101/gr.091785.109. Epub 2009 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验