Suppr超能文献

自复制人工神经网络产生通用进化动力学。

Self-replicating artificial neural networks give rise to universal evolutionary dynamics.

机构信息

School of Zoology, Faculty of Life Sciences, Tel Aviv University; Tel Aviv, Israel.

School of Computer Science, Reichman University; Herzliya, Israel.

出版信息

PLoS Comput Biol. 2024 Mar 28;20(3):e1012004. doi: 10.1371/journal.pcbi.1012004. eCollection 2024 Mar.

Abstract

In evolutionary models, mutations are exogenously introduced by the modeler, rather than endogenously introduced by the replicator itself. We present a new deep-learning based computational model, the self-replicating artificial neural network (SeRANN). We train it to (i) copy its own genotype, like a biological organism, which introduces endogenous spontaneous mutations; and (ii) simultaneously perform a classification task that determines its fertility. Evolving 1,000 SeRANNs for 6,000 generations, we observed various evolutionary phenomena such as adaptation, clonal interference, epistasis, and evolution of both the mutation rate and the distribution of fitness effects of new mutations. Our results demonstrate that universal evolutionary phenomena can naturally emerge in a self-replicator model when both selection and mutation are implicit and endogenous. We therefore suggest that SeRANN can be applied to explore and test various evolutionary dynamics and hypotheses.

摘要

在进化模型中,突变是由建模者外源性引入的,而不是由复制子自身内源性引入的。我们提出了一种新的基于深度学习的计算模型,即自我复制人工神经网络(SeRANN)。我们对其进行训练,使其能够(i)复制自身的基因型,就像生物有机体一样,从而引入内源性自发突变;(ii)同时执行分类任务,以确定其繁殖力。我们对 1000 个 SeRANN 进行了 6000 代的进化,观察到了各种进化现象,如适应、克隆干扰、上位性以及突变率和新突变的适应度效应分布的演变。我们的结果表明,当选择和突变都是内隐和内源性的时,自我复制模型中可以自然出现普遍的进化现象。因此,我们建议可以将 SeRANN 应用于探索和测试各种进化动态和假设。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a055/11003675/ef10c693eca2/pcbi.1012004.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验